View More View Less
  • 1 Yangzhou University College of Chemistry and Chemical Engineering Yangzhou China 225002 Yangzhou China 225002
  • | 2 Qufu Normal University College of Chemical Science Qufu China 273165 Qufu China 273165
  • | 3 Chinese Academy of Sciences Thermochemistry Laboratory, Dalian Institute of Chemical Physics Dalian, Liaoning China 116023 Dalian, Liaoning China 116023
Restricted access

Abstract  

The molar heat capacities of the pure samples of acetone and methanol, and the azeotropic mixture composed of acetone and methanol were measured with an adiabatic calorimeter in the temperature range 78–320 K. The solid–solid and solid–liquid phase transitions of the pure samples and the mixture were determined based on the curve of the heat capacity with respect to temperature. The phase transitions took place at 126.160.68 and 178.961.47 K for the sample of acetone, 157.790.95 and 175.930.95 K for methanol, which were corresponding to the solid–solid and the solid–liquid phase transitions of the acetone and the methanol, respectively. And the phase transitions occurred at 126.580.24, 157.160.42, 175.500.46 and 179.740.89 K corresponding to the solid–solid and the solid–liquid phase transitions of the acetone and the methanol in the mixture, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to standard temperature 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 0 0 1
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0