View More View Less
  • 1 Department of Chemistry, Rhodes University, Grahamstown, South Africa, 6140
  • | 2 Belfast, UK, BT9 5RW, Northern Ireland, 5, Regents Wood, Malone Road
Restricted access

Abstract

This analysis of interface phenomena considers the alternative processes that may result from heating a crystal, particularly including thermal decomposition, involving chemical reactions, and melting, involving loss of long-range structural order. Such comparisons are expected to provide insights into the factors that determine and control the different types of thermal changes of solids. The survey also critically reviews some theoretical concepts that are currently used to describe solid-state thermal reactions and which provides relevant background information to models used in a recently proposed theory of melting. Probable reasons for the current lack of progress in characterizing the factors that control chemical changes and mechanisms of thermal reactions in solids are also discussed.

It is concluded that some aspects of the macro properties of reaction interfaces in crystal reactions have been adequately described, including geometric representations of interface advance during nucleation and growth processes. In contrast, relatively very little is known about the detailed (micro) processes occurring within these active, advancing interfacial zones: reactant/product contacts during chemical reactions and crystal/melt contacts during fusion. From the patterns of behaviour distinguished, a correlation scheme, based on relative stabilities of crystal structures and components therein, is proposed, which accounts for the four principal types of thermal changes that occur on heating solids: sublimation, decomposition, crystallographic transformation or melting. Identifications of the reasons for these different consequences of heating are expected to contribute towards increasing our understanding of each of the individual processes mentioned and to advance theory of the thermal chemistry of solids, currently enjoying a prolonged quiescent phase.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 2 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0