Authors:
Z. Zhang
,
L. SunMaterials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P.R. China

Search for other papers by L. Sun in
Current site
Google Scholar
PubMed
Close
,
Z. TanMaterials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P.R. China

Search for other papers by Z. Tan in
Current site
Google Scholar
PubMed
Close
,
F. XuMaterials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P.R. China

Search for other papers by F. Xu in
Current site
Google Scholar
PubMed
Close
,
X. Lv
,
J. Zeng
, and
Y. SawadaDepartment of Nanochemistry, Faculty of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi, Kanagawa, 243-0297 Japan

Search for other papers by Y. Sawada in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The molar heat capacities of the room temperature ionic liquid 1-butylpyridinium tetrafluoroborate (BPBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, Cp,m [J K−1 mol−1]=181.43+51.297X −4.7816X2−1.9734X3+8.1048X4+11.108X5 [X=(T−135)/55] for the solid phase (80–190 K), Cp,m [J K−1 mol−1]= 349.96+25.106X+9.1320X2+19.368X3+2.23X4−8.8201X5 [X=(T−225)/27] for the glass state (198–252 K), and Cp,m[J K−1 mol−1]= 402.40+21.982X−3.0304X2+3.6514X3+3.4585X4 [X=(T−338)/52] for the liquid phase (286–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BPBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BPBF4 was observed at 194.09 K, the enthalpy and entropy of the glass transition were determined to be ΔHg=2.157 kJ mol−1 and ΔSg=11.12 J K−1 mol−1, respectively. The result showed that the melting point of the BPBF4 is 279.79 K, the enthalpy and entropy of phase transition were calculated to be ΔHm = 8.453 kJ mol−1 and ΔSm=30.21 J K−1 mol−1. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BPBF4 was determined to be ΔcHm0 = −5451±3 kJ mol−1. The standard molar enthalpy of formation of BPBF4 was evaluated to be ΔfHm0 = −1356.3±0.8 kJ mol−1 at T=298.150±0.001 K.

  • Collapse
  • Expand
  • Top

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2022 2 0 0
Apr 2022 2 0 0
May 2022 0 0 0
Jun 2022 0 0 0
Jul 2022 0 0 0
Aug 2022 0 0 0
Sep 2022 0 0 0

Geopolymers

Inorganic polymeric new materials

Author:
J. Davidovits