View More View Less
  • 1 M. S. University of Baroda Condensed Matter Physics Laboratory, Applied Physics Department, Faculty of Technology and Engineering Vadodara 390 001 India
  • | 2 Narmada College of Science and Commerce Zadeshwar, Bharuch 392 011 India
Restricted access


The crystallization of metallic glasses has been studied quite extensively using differential scanning calorimetry (DSC) technique. Most methods rely on isokinetic hypothesis for the kinetic analysis of crystallization for which the choice of a reliable model is very important. Due to inherent uncertainty in the determination of kinetic parameters, the model-free isoconversional analytical techniques were proposed. However, these isoconversional methods are scarcely used for metallic glasses. In the present work, the crystallization kinetics of Fe67Co18B14Si1 metallic glass through both isoconversional and isokinetic methods has been investigated and attention has been focused on the relative applicability of the two methods.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)