View More View Less
  • 1 Chinese Academy of Science Thermochemistry Laboratory, Dalian Institute of Chemical Physics Dalian 116023 China
  • | 2 Dalian Jiaotong University College of Environmental Science and Engineering Dalian 116028 China
Restricted access

Cross Mark

Abstract  

The molar heat capacities Cp,m of 2,2-dimethyl-1,3-propanediol were measured in the temperature range from 78 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-solid and a solid-liquid phase transitions were found at T-314.304 and 402.402 K, respectively, from the experimental Cp-T curve. The molar enthalpies and entropies of these transitions were determined to be 14.78 kJ mol−1, 47.01 J K−1 mol for the solid-solid transition and 7.518 kJ mol−1, 18.68 J K−1 mol−1 for the solid-liquid transition, respectively. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 310 K, Cp,m/(J K−1 mol−1)=117.72+58.8022x+3.0964x2+6.87363x3−13.922x4+9.8889x5+16.195x6; x=[(T/K)−195]/115. In the temperature range of 325 to 395 K, Cp,m/(J K−1 mol−1)=290.74+22.767x−0.6247x2−0.8716x3−4.0159x4−0.2878x5+1.7244x6; x=[(T/K)−360]/35. The thermodynamic functions HTH298.15 and STS298.15, were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The thermostability of the compound was further tested by DSC and TG measurements. The results were in agreement with those obtained by adiabatic calorimetry.