View More View Less
  • 1 Université de Rouen Unité de Croissance Cristalline et de Modélisation Moléculaire (UC2M2), Sciences et Méthodes Séparatives (SMS) UPRES EA 3233, IRCOF rue Tesnière F-76821 Mont Saint-Aignan Cedex France
Restricted access


A combined analysis of structural data and experimental results (DSC, temperature-resolved XRPD and hot stage optical microscopy) revealed that the dehydration mechanism of cortisone acetate monohydrate (CTA·H2O) involves a collective and anisotropic departure of water molecules followed by a cooperative structural reorganization toward the anhydrous polymorph CTA (form 2). In spite of the lack of crystal structure data, it can be postulated from experimental data that thermal decomposition of the dihydrated form (CTA·2H2O) and of the tetrahydrofuran solvate (CTA·THF) toward another polymorph (CTA (form 3)) also proceeds according to a cooperative mechanism, thus giving rise to probable structural filiations between these crystalline forms of CTA. The crystal structure determination of two original solvates (CTA·DMF and CTA·DMSO) indicates that these phases are isomorphous to the previously reported acetone solvate. However, their desolvation behaviour does not involve a cooperative mechanism, as could be expected from structural data only. Instead, the decomposition mechanism of CTA·DMF and CTA·DMSO starts with the formation of a solvent-proof superficial layer, followed by the partial dissolution of the enclosed inner part of crystals. Hot stage optical microscopy observations and DSC measurements showed that dissolved materials (resulting from a peritectic decomposition) is suddenly evacuated through macroscopic cracks about 30°C above the ebullition point of each solvent. From this unusual behaviour, the necessity to investigate rigorously the various aspects (thermodynamics, kinetics, crystal structures and physical factors) of solvate decompositions is highlighted, including factors related to the particular preparation route of each sample.

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2022 1 0 0
Feb 2022 0 0 0
Mar 2022 1 0 0
Apr 2022 0 0 0
May 2022 0 0 0
Jun 2022 0 0 0
Jul 2022 0 0 0