View More View Less
  • 1 University of Porto Centro de Investigação em Química, Department of Chemistry, Faculty of Science Rua do Campo Alegre 687 4169-007 Porto Portugal
Restricted access

Abstract  

The standard (p0=0.1 MPa) molar enthalpy of formation, ΔfHm0(l)=169.8±2.6 kJ mol−1, of the liquid 3-bromoquinoline was derived from its standard molar energy of combustion, in oxygen, to yield CO2(g), N2(g) and HBr·600H2O(l), at T=298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpy of vaporization of the compound, Δ1gHm0=70.7±2.3 kJ mol−1. These two thermodynamic parameters yielded the standard molar enthalpy of formation, in the gaseous phase, at T=298.15 K, ΔfHm0(g)=240.5±3.5 kJ mol−1.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 1 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0