Authors: H. Chen 1 and N. Liu 1
View More View Less
  • 1 University of Science and Technology of China Hefei State Key Laboratory of Fire Science Anhui 230026 P. R. China
Restricted access

Abstract  

The temperature integral cannot be analytically integrated and many simple closed-form expressions have been proposed to use in the integral methods. This paper first reviews two types of simple approximation expressions for temperature integral in literature, i.e. the rational approximations and exponential approximations. Then the relationship of the two types of approximations is revealed by the aid of a new equation concerning the 1st derivative of the temperature integral. It is found that the exponential approximations are essentially one kind of rational approximations with the form of h(x)=[x/(Ax+k)]. That is, they share the same assumptions that the temperature integral h(x) can be approximated by x/Ax+k). It is also found that only two of the three parameters in the general formula of exponential approximations are needed to be determined and the other one is a constant in theory. Though both types of the approximations have close relationship, the integral methods derived from the exponential approximations are recommended in kinetic analysis.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)