Author:
M. Fernández Facultad de Química, Universidad del País Vasco Departamento de Ciencia y Tecnología de Polímeros P.O. Box 1072 20080 San Sebastián Spain

Search for other papers by M. Fernández in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The thermal degradation of poly(vinyl acetate) (PVA), poly(vinyl alcohol) (PVAL), vinyl acetate-vinyl alcohol (VAVAL), vinyl acetate-vinyl-3,5-dinitrobenzoate (VAVDNB) and vinyl alcohol-3,5-dinitrobenzoate (VALVDNB) copolymers have been studied using differential thermal analysis (DTA) and thermogravimetry (TG) under isothermal and dynamic conditions in nitrogen. Thermal analysis indicates that PVA and PVAL are thermally more stable than VAVAL copolymers, being PVAL the most stable polymer. The presence of small amounts of vinyl-3,5-dinitrobenzoate (VDNB) in PVA or PVAL produces a marked decrease in the thermal stability of both homopolymers, being VALVDNB copolymers the less stable materials. The apparent activation energy of the degradative process was determined by the Kissinger and Flynn-Wall methods which agree well.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)