Authors:
E. Aslan Middle East Technical University Department of Chemistry 06531 Ankara Turkey

Search for other papers by E. Aslan in
Current site
Google Scholar
PubMed
Close
,
L. Toppare Middle East Technical University Department of Chemistry 06531 Ankara Turkey

Search for other papers by L. Toppare in
Current site
Google Scholar
PubMed
Close
, and
J. Hacaloğlu Middle East Technical University Department of Chemistry 06531 Ankara Turkey

Search for other papers by J. Hacaloğlu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Thermal characteristics of a new thiophene derivative, 2-(thiophen-3-yl-)ethyl octanoate (OTE), its homopolymer (POTE), and copolymer with thiophene P(OTE-co-Th) were investigated via pyrolysis mass spectrometry. Thermal degradation of the copolymer started by lose of side chains and thiophene involving products evolved almost in the same temperature range where PTh degradation was detected, at slightly higher temperatures than PTh backbone decomposed during the pyrolysis of POTE. The extent of doping and network structure decreased in the order POTE<P(OTE-co-Th)<PTh.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)