Authors:
R. Frost School of Physical and Chemical Sciences, Queensland University of Technology Inorganic Materials Research Program GPO Box 2434 Brisbane Queensland 4001 Australia

Search for other papers by R. Frost in
Current site
Google Scholar
PubMed
Close
,
A. Locke School of Physical and Chemical Sciences, Queensland University of Technology Inorganic Materials Research Program GPO Box 2434 Brisbane Queensland 4001 Australia

Search for other papers by A. Locke in
Current site
Google Scholar
PubMed
Close
, and
W. Martens School of Physical and Chemical Sciences, Queensland University of Technology Inorganic Materials Research Program GPO Box 2434 Brisbane Queensland 4001 Australia

Search for other papers by W. Martens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The thermal decomposition of beaverite and plumbojarosite was studied using a combination of thermogravimetric analysis coupled to a mass spectrometer. The mineral beaverite Pb(Fe,Cu)3(SO4)2(OH)6 decomposes in three stages attributed to dehydroxylation, loss of sulphate and loss of oxygen, which take place at 376 and 420, 539 and 844°C. In comparison three thermal decomposition steps are observed for plumbojarosite PbFe6(SO4)4(OH)12 at 376, 420 and 502°C attributed to dehydroxylation; loss of sulphate occurs at 599°C; and loss of oxygen and formation of lead occurs at 844 and 953°C. The temperatures of the thermal decomposition of the natural plumbojarosite were found to be less than that for the synthetic jarosite. A comparison of the thermal decomposition of plumbojarosite with argentojarosite is made. The understanding of the chemistry of the thermal decomposition of minerals such as beaverite, argentojarosite and plumbojarosite and related minerals is of vital importance in the study known as ‘archeochemistry’.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)