Organic peroxides are commonly employed as an initiator for polymerization, a source of free radicals, a hardener, and a linking agent. Due to its relatively weak oxygen-oxygen bond, di-tert butyl peroxide (DTBP) has been categorized as flammable type or Class III by the National Fire Protection Association (NFPA). The transport of dangerous goods (TDG) has published a warning against DTBP that it could potentially induce violent heat, explosion, fire and self-ignition under certain circumstances. DTBP has been recommended as an international standard sample for estimating the performance of several calorimeters, such as glass tube tests, differential scanning calorimetry (DSC), and vent sizing package 2 (VSP2). In this study, we measured the precise temperature changes and heat flow with the above-mentioned testing instruments. However, some runaway incidents caused by DTBP have demonstrated the reaction temperature could be as low as ambient temperature. The reactivity and the hazardous incompatibility with sulfuric acid (H2SO4) and hydrochloric acid (HCl) of DTBP have not been evident, and the runaway hazards involved in different processing conditions were clarified in this study by implementing the two calorimeters. Acid-catalyzed characteristics and reaction hazards of DTBP could be acquired, such as heat of decomposition (ΔHd) and exothermic onset temperature (T0).