View More View Less
  • 1 Wuhan University, Wuhan College of Chemistry and Molecular Science 430072 Hubei China
  • | 2 Wuhan University College of Life Science Wuhan 430072 China
Restricted access


The effect of glucose (0–15 mass%) on the kinetics of bovine serum albumin (BSA) denatured aggregation at high concentration in aqueous solution has been studied by differential scanning calorimetry. The observed denatured aggregation process was irreversible and could be characterized by a denaturation temperature (Tm), apparent activation energy (Ea), the approximate order of reaction, and pre-exponential factor (A). As the glucose concentration increased from 0 to 15 mass%, Tm increased, Ea also increased from 514.59409±6.61489 to 548.48611±7.81302 kJ mol−1, and A/s−1 increased from 1.24239E79 to 5.59975E83. The stabilization increased with an increasing concentration of glucose, which was attributed to its ability to alter protein denatured aggregation kinetics. The kinetic analysis was carried out using a composite procedure involving the iso-conversional method and the master plots method. The iso-conversional method indicated that denatured aggregation of BSA in the presence and absence of glucose should conform to single reaction model. The master plots method suggested that the simple order reaction model best describe the process. This study shows the combination of iso-conversional method and the master plots method can be used to quantitatively model the denatured aggregation mechanism of the BSA in the presence and absence of glucose.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0