View More View Less
  • 1 Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6, 95125 Catania, Italy
  • | 2 Istituto di Biostrutture e Bioimmagini, CNR, Sezione di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
Restricted access

Abstract  

The role played by the metal ion in thermodynamics of azurin folding was addressed by studying the thermal denaturation of the apo-form by differential scanning calorimetry (DSC), and by comparing the results with data concerning the holo protein. The thermal unfolding experiments showed that at 25°C the presence of metal ion increases the thermodynamic stability of azurin by 24 kJ mol−1. A comparison between the unfolding and the copper binding free energies allow us to assert that the unfolded polypeptide chain binds copper and subsequently folds into native holo azurin, being this the thermodynamically most favourable process in driving azurin folding.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)