Polyamide 6.6 multifilament yarns are converted to crimped fibres by texturing in order to simulate the properties of natural staple fibre yarns for textile applications. Texturing is carried out by mechanical stresses (turbulences or twisting) in different atmospheres which affect crystallinity and thermal stability of yarns. Two polyamide yarns with the same linear density but consisting of filaments of different fineness were textured by the air-jet and the false-twist procedures. The influence of texturing conditions and filament fineness on crystallinity and thermomechanical behaviour and dimensional stability were studied by TMA and DSC. The air-jet texturing procedure leads to a slight increase in crystallinity of yarns whereas the false-twist texturing procedure was more effective especially when thicker filaments were textured. The inflection point of the shrinkage curve before melting was a good estimator of the effective temperature of yarn texturing.