View More View Less
  • 1 University of Belgrade Faculty of Physical Chemistry Studentski trg 12-16 P.O. Box 137 11001 Belgrade Serbia and Montenegro
Restricted access


The non-isothermal decomposition process of the powder sample of palladium acetylacetonate [Pd(acac)2] was investigated by thermogravimetric (TG) and the X-ray diffraction (XRD) techniques. Model-free isoconversional method of Tang, applied to the investigated decomposition process, yield practically constant apparent activation energy in the range of 0.05≤α≤0.95. It was established, that the Coats-Redfern (CR) method gives several statistically equivalent reaction models, but only for the phase-boundary reaction models (R2 and R3), the calculated value of the apparent activation energy (E) is nearest to the values of E obtained by the Tang’s and Kissinger’s methods. The apparent activation energy value obtained by the IKP method (132.4 kJ mol−1) displays a good agreement with the value of E obtained using the model-free analysis (130.3 kJ mol−1). The artificial isokinetic relationship (aIKR) was used for the numerical reconstruction of the experimental integral model function, g(α). It was established that the numerically reconstructed experimental function follows R3 reaction model in the range of α, taken from model-free analysis. Generally, decomposition process of Pd(acac)2 starts with initial nucleation which was characterized by rapid onset of an acceleratory reaction without presence of induction period.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 4 0 0
Jun 2021 0 0 0
Jul 2021 2 0 0
Aug 2021 2 0 0
Sep 2021 1 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0