View More View Less
  • 1 Dalian University of Technology Department of Chemistry, School of Chemical Engineering Dalian 116023 China
  • | 2 Chinese Academy of Science Thermochemisty Laboratory, Dalian Institute of Chemical Physics Dalian 116023 China
  • | 3 Heilongjiang East College Department of Food and Environment Engineering Haerbin 150086 China
  • | 4 Dalian Jiaotong University College of Environmental and Chemical Engineering Dalian 116028 China
Restricted access

Abstract  

The low-temperature heat capacity Cp,m of erythritol (C4H10O4, CAS 149-32-6) was precisely measured in the temperature range from 80 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=390.254 K from the experimental Cp-T curve. The molar enthalpy and entropy of this transition were determined to be 37.92±0.19 kJ mol−1 and 97.17±0.49 J K−1 mol−1, respectively. The thermodynamic functions [HT-H298.15] and [ST-S298.15], were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The standard molar enthalpy of combustion and the standard molar enthalpy of formation of the compound have been determined: ΔcHm0(C4H10O4, cr)= −2102.90±1.56 kJ mol−1 and ΔfHm0(C4H10O4, cr)= − 900.29±0.84 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)