Authors: H. Chen 1 and N. Liu 1
View More View Less
  • 1 University of Science and Technology of China State Key Laboratory of Fire Science Hefei Anhui 230026 P. R. China
Restricted access

Abstract  

The generalized temperature integral
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int\limits_0^T {T^m } \exp ( - E/RT)dT$$ \end{document}
frequently occurs in non-isothermal kinetic analysis. Here E is the activation energy, R the universal gas constant and T the absolute temperature. The exponent m arises from the temperature dependence of the pre-exponential factor. This paper has proposed two new approximate formulae for the generalized temperature integral, which are in the following forms:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\begin{gathered} h_m (x) = \frac{x} {{(1.00141 + 0.00060m)x + (1.89376 + 0.95276m)}} \hfill \\ h_m (x) = \frac{{x + (0.74981 - 0.06396m)}} {{(1.00017 + 0.00013m)x + (2.73166 + 0.92246m)}} \hfill \\ \end{gathered}$$ \end{document}
where hm(x) is the equivalent form of the generalized temperature integral. For commonly used values of m in kinetic analysis, the deviations of the new approximations from the numerical values of the integral are within 0.2 and 0.03%, respectively. In contrast to other approximations, both the present approaches are simple, accurate and can be used easily in kinetic analysis.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0