Authors: and
View More View Less
• 1 University of Science and Technology of China State Key Laboratory of Fire Science Hefei Anhui 230026 P. R. China
Restricted access

## Abstract

The generalized temperature integral
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int\limits_0^T {T^m } \exp ( - E/RT)dT$$ \end{document}
frequently occurs in non-isothermal kinetic analysis. Here E is the activation energy, R the universal gas constant and T the absolute temperature. The exponent m arises from the temperature dependence of the pre-exponential factor. This paper has proposed two new approximate formulae for the generalized temperature integral, which are in the following forms:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\begin{gathered} h_m (x) = \frac{x} {{(1.00141 + 0.00060m)x + (1.89376 + 0.95276m)}} \hfill \\ h_m (x) = \frac{{x + (0.74981 - 0.06396m)}} {{(1.00017 + 0.00013m)x + (2.73166 + 0.92246m)}} \hfill \\ \end{gathered}$$ \end{document}
where hm(x) is the equivalent form of the generalized temperature integral. For commonly used values of m in kinetic analysis, the deviations of the new approximations from the numerical values of the integral are within 0.2 and 0.03%, respectively. In contrast to other approximations, both the present approaches are simple, accurate and can be used easily in kinetic analysis.

### Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0