View More View Less
  • 1 Brno University of Technology Faculty of Chemistry Purkyňova 118 Brno Czech Republic
Restricted access


The thermodynamic stability of lignite humic acids (sodium salt) aggregates was studied by high resolution ultrasonic spectroscopy within the temperature interval from 5 to 90°C. The changes in differential ultrasonic velocity (U12) showed strong differences among humic solutions within the concentration range from 0.005 to 10 g L−1. Measurement revealed several transitions which were attributed to the weakening of humic secondary structure. Concentration around 1 g L−1 seemed to be a limit under which the change of the prevalence and importance of hydration occurred. Above this concentration the difference in U12 decreased following the temperature increase which was explained as a dominance of hydrophilic hydration. In contrast, below this concentration, the temperature dependence of U12 resulted in increasing tendency which was attributed to the prevalence of hydrophobic hydration, i.e. uncovering of apolar groups towards surrounding water. Additional experiments in which the humic sample was modified by hydrochloric acid resulted in a slight structural stabilization which lead to the conclusion that humic micelle-like subaggregates form an open-layer assemblies easily accessible for interaction with an extraneous molecule. That was partly verified by addition of propionic acid which brought about even larger reconformation of humic aggregates and exhibition of polar groups towards hydration water. The reversible changes in humate solutions induced by elevated temperatures provided the evidence about the existence of significant physical interactions among humic molecules resulting in formation of various kinds of aggregates. The nature of aggregates, mainly the stability and conformation, strongly depends on the concentration. Evidently, the changes observed in this work cannot be simply explained as expansions or conformational changes of macromolecular coils.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)