View More View Less
  • 1 Universidad Complutense Departamento de Ingeniería Química, Facultad de Ciencias Químicas Avda de la Complutense, s/n 28040 Madrid Spain
Restricted access

Abstract  

The curing kinetics of lignin-novolac and methylolated lignin-novolac resins were studied using non-isothermal methods employing differential scanning calorimetry (DSC) at different heating rates. The Belichmeier, Ozawa and Kissinger methods were applied, which give the kinetic parameters of the curing process studied. In addition, the model-fitting Coats-Redfern method was used to analyze the experimental data. The kinetic study evaluated the effect of the lignin (softwood ammonium lignosulfonate), methylolated or not, on the resin curing process. Results for lignin-novolac and modified lignin-novolac resins were compared with a commercial novolac resin as a reference. When lignosulfonate is modified by methylolation and is incorporated in the novolac resin, there is an important reduction in activation energy. The lignin-novolac showed slightly higher values of activation energy than methylolated-lignin resins, but lower values than commercial resins. This behavior has been attributed to the extra methyol groups introduced by lignosulfonate.