Authors: and
View More View Less
• 1 South-Central University for Nationalities Hubei Key Laboratory for Catalysis and Material Science, College of Chemistry and Material Science Wuhan 430074 China
Restricted access

## Abstract

A new procedure to approximate the generalized temperature integral
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int_{0}^{T} {T^{m} {\text{e}}^{ - E/RT} } {\text{d}}T,$$ \end{document}
which frequently occurs in non-isothermal thermal analysis, has been developed. The approximate formula has been proposed for calculation of the integral by using the procedure. New equation for the evaluation of non-isothermal kinetic parameters has been obtained, which can be put in the form:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\ln \left[ {{\frac{g(\alpha )}{{T^{(m + 2)0.94733} }}}} \right] = \left[ {\ln {\frac{{A_{0} E}}{\beta R}} - (m + 2)0.18887 - (m + 2)0.94733\ln {\frac{E}{R}}} \right] - (1.00145 + 0.00069m){\frac{E}{RT}}$$ \end{document}
The validity of the new approximation has been tested with the true value of the integral from numerical calculation. Compared with several published approximation, the new one is simple in calculation and retains high accuracy, which indicates it is a good approximation for the evaluation of kinetic parameters from non-isothermal kinetic analysis.

Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 2 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0