View More View Less
  • 1 Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, QLD 4001, Australia
  • | 2 State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092 China
Restricted access

Abstract

The desorption of benzoic acid and stearic acid from sodium and calcium montmorillonites has been studied using thermogravimetric and differential thermogravimetric analysis. Desorption of benzoic acid from sodium montmorillonites occurs at 140 °C and from calcium montmorillonites at 179 °C. This increase in temperature is attributed to the benzoic acid bonding to the calcium in the interlayer. A lowering of the dehydroxylation temperature of montmorillonites is observed with acid adsorption. Stearic acid desorbs at 218 °C as observed by the DTG curves. The desorption pattern differs between the sodium montmorillonites and the calcium montmorillonites.

  • 1.

    Kennedy MJ Pevear DR Hill RJ . Mineral surface control of organic carbon in black shale. Science. 2002; 295: 65760 .

  • 2.

    Greene-Kelly R . Sorption of aromatic organic compounds by montmorillonite. I. Orientation studies. Trans Faraday Soc. 1955; 51: 41224 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Greenland DJ Laby RH Quirk JP . Adsorption of amino acids and peptides by montmorillonite and illite. I. Cation exchange and proton transfer. Trans Faraday Soc. 1965; 61: 201323 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Heller-Kallai L Aizenshtat Z Miloslavski I . The effect of various clay minerals on the thermal decomposition of stearic acid under ‘bulk flow’ conditions. Clay Miner. 1984; 19: 77988 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Sieskind O Ourisson G . Clay-organic matter interactions. Formation of complexes between montmorillonite and stearic and behenic acids. Comptes Rendus des Seances de l’Academie des Sciences, Serie C: Sciences Chimiques. 1971; 272: 18858.

    • Search Google Scholar
    • Export Citation
  • 6.

    Yan L-G Wang J Yu H-Q Wei Q Du B Shan X-Q . Adsorption of benzoic acid by CTAB exchanged montmorillonite. Appl Clay Sci. 2007; 37: 22630 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Yariv S Lapides I . The effect of mechanochemical treatments on clay minerals and the mechanochemical adsorption of organic materials onto clay minerals. J Mater Synth Process. 2000; 8: 22333 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Adu-Wusu K Whang JM McDevitt MF . Modification of clay-based waste containment materials, Conference proceedings—international containment technology conference, St. Petersburg, FL, Feb 9-12, 1997. p. 665671.

    • Search Google Scholar
    • Export Citation
  • 9.

    Akcay G Yurdakoc K . Removal of various phenoxyalkanoic acid herbicides from water by organo-clays. Acta Hydrochim Hydrobiol. 2000; 28: 3004 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Alther GR . Organoclay filtration technology for oil removal. Adv Filtr Sep Technol. 1999; 13B:94552.

  • 11.

    Alther GR . Organoclays remove humic substances from water. Spec Publ R Soc Chem. 2000; 259: 27788.

  • 12.

    Alther G . Soil and groundwater remediation with organoclay. Contam Soils. 2001; 6: 22531.

  • 13.

    Bhatt J Bhalala BT . Use of organo-clay for decolorizing colored wastewater from the textile industry. Vijnana Parishad Anusandhan Patrika. 1995; 38: 24954.

    • Search Google Scholar
    • Export Citation
  • 14.

    Alther GR . Stormwater treatment. Water Environ Technol. 2001; 13: 314.

  • 15.

    Alther GR . Removal of emulsified oil from wastewater. Fluid/Part Sep J. 2000; 13: 14651.

  • 16.

    Srinivasan KR Fogler HS . Use of inorgano-organo-clays in industrial wastewater treatment. Organohalogen Compd. 1990; 3: 41720.

  • 17.

    Springman K Mayura K McDonald T Donnelly KC Kubena LF Phillips TD . Organoclay adsorption of wood-preserving waste from groundwater. Analytical and toxicological evaluations. Toxicol Environ Chem. 1999; 71: 24759 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Brixie JM Boyd SA . Treatment of contaminated soils with organoclays to reduce leachable pentachlorophenol. J Environ Qual. 1994; 23: 128390 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Cruz-Guzman M Celis R Hermosin MC Cornejo J . Sorption of the herbicide simazine by biomolecule-modified clays, Pesticide in Air, Plant, Soil & Water System, Proceedings of the Symposium Pesticide Chemistry, 12th, Piacenza, Italy, June 4-6, 2003. p. 185191.

    • Search Google Scholar
    • Export Citation
  • 20.

    Carrizosa MJ Hermosin MC Koskinen WC Cornejo J . Use of organosmectites to reduce leaching losses of acidic herbicides. Soil Sci Soc Am J. 2003; 67: 5117.

    • Search Google Scholar
    • Export Citation
  • 21.

    Sand ID Piner RL Gilmer JW Owens JT . Organoclays as processing aids for plasticized thermoplastics. USA: U.S. Eastman Chemical Company, Us; 2003. 8 pp.

    • Search Google Scholar
    • Export Citation
  • 22.

    Rafailovich M Si M Goldman M . Flame retardant and UV absorptive polymethylmethacrylate nanocomposites. PCT Int. Appl. USA: The Research Foundation of State University of New York; Wo, 2003. 34 pp.

    • Search Google Scholar
    • Export Citation
  • 23.

    Meincke O Hoffmann B Dietrich C Friedrich C . Viscoelastic properties of polystyrene nanocomposites based on layered silicates. Macromol Chem Phys. 2003; 204: 82330 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Maiti P Yamada K Okamoto M Ueda K Okamoto K . New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater. 2002; 14: 465461 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Chaiko D . Preparation of organoclays with improved dispersibility from smectites and kaolin clays by coating clays with water-soluble polymer. PCT Int. Appl. USA: University of Chicago; Wo, 2002. 24 pp.

    • Search Google Scholar
    • Export Citation
  • 26.

    Nzengung VA , Organoclays as sorbents for organic contaminants in aqueous and mixed-solvent systems. GA: Georgia Institute Technology, FIELD URL; 1993. 191 pp.

    • Search Google Scholar
    • Export Citation
  • 27.

    Soule NM Burns SE . Effects of organic cation structure on behavior of organobentonites. J Geotech Geoenviron Eng. 2001; 127: 36370 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Earnest CM . Characterization of smectite clay minerals by differential thermal analysis and thermogravimetry. Part I. Montmorillonite. Perkin-Elmer Thermal Analysis Application Study 31, Pt. 1; 1980. 8 pp.

    • Search Google Scholar
    • Export Citation
  • 29.

    Yariv S . Differential thermal analysis (DTA) in the study of thermal reactions of organo-clay complexes. Natural and Laboratory-Simulated Thermal Geochemical Processes; 2003. p. 253296.

    • Search Google Scholar
    • Export Citation
  • 30.

    Yariv S . The role of charcoal on DTA curves of organo-clay complexes: an overview. Appl Clay Sci. 2004; 24: 22536 .

  • 31.

    Yariv S Ovadyahu D Nasser A Shuali U Lahav N . Thermal analysis study of heat of dehydration of tributylammonium smectites. Thermochim Acta. 1992; 207: 10313 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Pramoda KP Liu T Liu Z He C Sue H-J . Thermal degradation behavior of polyamide 6/clay nanocomposites. Polym Degrad Stab. 2003; 81: 4756 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Carmody O Frost R Xi Y Kokot S . Selected adsorbent materials for oil-spill cleanup. A thermoanalytical study. J Therm Anal Calorim. 2008; 91: 80916 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Frost RL Locke A Martens WN . Thermogravimetric analysis of wheatleyite Na2Cu2& (C2O4)2 · 2H2O. J Therm Anal Calorim. 2008;93: 9937 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Frost RL Locke AJ Hales MC Martens WN . Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008; 94: 2038 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Frost RL Locke AJ Martens W . Thermal analysis of beaverite in comparison with plumbojarosite. J Therm Anal Calorim. 2008; 92: 88792 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Frost RL Wain D . A thermogravimetric and infrared emission spectroscopic study of alunite. J Therm Anal Calorim. 2008; 91: 26774 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Hales MC Frost RL . Thermal analysis of smithsonite and hydrozincite. J Therm Anal Calorim. 2008; 91: 85560 .

  • 39.

    Palmer SJ Frost RL Nguyen T . Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayer. J Therm Anal Calorim. 2008; 92: 87986 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Vagvoelgyi V Daniel LM Pinto C Kristof J Frost RL Horvath E . Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008; 92: 58994 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Vagvoelgyi V Hales M Frost RL Locke A Kristof J Horvath E . Conventional and controlled rate thermal analysis of nesquehonite Mg(HCO3)(OH) · 2(H2O). J Therm Anal Calorim. 2008;94: 5238.

    • Search Google Scholar
    • Export Citation
  • 42.

    Vagvolgyi V Daniel LM Pinto C Kristof J Frost RL Horvath E . Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008; 92: 58994.

    • Search Google Scholar
    • Export Citation
  • 43.

    Vagvolgyi V Frost RL Hales M Locke A Kristof J Horvath E . Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008; 92: 8937 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Vagvolgyi V Hales M Martens W Kristof J Horvath E Frost RL . Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008; 92: 9116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Zhao Y Frost RL Vagvolgyi V Waclawik ER Kristof J Horvath E . XRD, TEM and thermal analysis of yttrium doped boehmite nanofibres and nanosheets. J Therm Anal Calorim. 2008; 94: 21926 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Kristof J Frost RL Kloprogge JT Horvath E Mako E . Detection of four different OH-groups in ground kaolinite with controlled-rate thermal analysis. J Therm Anal Calorim. 2002; 69: 7783 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)