Authors:
Yuhai Wang Sun Yat-sen University Key Laboratory of Polymeric Composites and Functional Materials, the Ministry of Education, Materials Science Institute, School of Chemistry and Chemical Engineering Guangzhou 510275 People's Republic of China

Search for other papers by Yuhai Wang in
Current site
Google Scholar
PubMed
Close
,
Hao Shen Sun Yat-sen University Key Laboratory of Polymeric Composites and Functional Materials, the Ministry of Education, Materials Science Institute, School of Chemistry and Chemical Engineering Guangzhou 510275 People's Republic of China

Search for other papers by Hao Shen in
Current site
Google Scholar
PubMed
Close
,
Gu Li Sun Yat-sen University Key Laboratory of Polymeric Composites and Functional Materials, the Ministry of Education, Materials Science Institute, School of Chemistry and Chemical Engineering Guangzhou 510275 People's Republic of China

Search for other papers by Gu Li in
Current site
Google Scholar
PubMed
Close
, and
Kancheng Mai Sun Yat-sen University Key Laboratory of Polymeric Composites and Functional Materials, the Ministry of Education, Materials Science Institute, School of Chemistry and Chemical Engineering Guangzhou 510275 People's Republic of China

Search for other papers by Kancheng Mai in
Current site
Google Scholar
PubMed
Close
Restricted access

The effect of different interfacial interaction on the crystallization and melting behavior of PP/nano-CaCO3 composites was investigated using differential scanning calorimetry, X-ray diffraction and polarized optical microscope. The results indicated that nano-CaCO3 acted as heterogeneous nuclei for PP crystallization. There existed a synergistic effect of heterogeneous nucleation between nano-CaCO3 and compatibilizer for PP crystallization, which was proved by increasing the crystallization rate and decreasing the fold surface free energy as well as favoring the formation of β-crystal of PP. However, this synergistic effect was dependent on the interfacial interaction between PP and compatibilizer. The increased miscibility between compatibilizer and PP favored this synergistic effect.

  • 1.

    Dagani R . Putting the ‘nano’ into composites. Chem Eng News. 1999; 77: 2537.

  • 2.

    Yang H Zhang Q Guo M Wang C Du RN Fu Q . Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer. 2006;47: 210615 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Zhang H Zhang Z . Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. Eur Polym J. 2007; 43: 3197207 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Causin V Marega C Marigo A Ferrara G Ferraro A . Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur Polym J. 2006; 42: 315361 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Alexandre M Dubois P . Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000; 28: 163 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Thridandapani RR Mudaliar A Yuan Q Misra RDK . Near surface deformation associated with the scratch in polypropylene-clay nanocomposite: a microscopic study. Mater Sci Eng A. 2006; 418: 292302 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Qin HL Zhang SM Zhao CG Hu GJ Yang MS . Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer. 2005; 46: 838695 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Lee HS Fasulo PD Rodgers WR Paul DR . TPO based nanocomposites. Part 2. Thermal expansion behavior Polymer. 2006; 47: 352839 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Ma CG Mai YL Rong MZ Ruan WH Zhang MQ . Phase structure and mechanical properties of ternary polypropylene/elastomer/nano-CaCO3 composites. Compos Sci Technol. 2007;67: 29973005 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Thio YS Argon AS Cohen RE Weinberg M . Toughening of isotactic polypropylene with CaCO3 particles. Polymer. 2002;43: 366174 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Zhang QX Yu ZZ Xie XL Mai YW . Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer. 2004;45: 598594 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Yang K Yang Q Li GX Sun YJ Feng DC . Mechanical properties and morphologies of polypropylene with different sizes of calcium carbonate particles. Polym Compos. 2006; 27: 44350 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Weon JI Gam KT Boo WJ Sue HJ . Impact-toughening mechanisms of calcium carbonate-reinforced polypropylene nanocomposite. J Appl Polym Sci. 2006; 99: 30706 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Chan CM Wu JS Li JX Cheung YK . Polypropylene/calcium carbonate nanocomposites. Polymer. 2002; 43: 298192 .

  • 15.

    Zuiderduin WCJ Westzaan C Huetink J Gaymans RJ . Toughening of polypropylene with calcium carbonate particles. Polymer. 2003; 44: 26175 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Avella M Cosco S Di Lorenzo ML Di Pace E Errico ME Gentile G . Nucleation activity of nanosized CaCO3 on crystallization of isotactic polypropylene, in dependence on crystal modification, particle shape, and coating. Eur Polym J. 2006;42: 154857 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Avella M Cosco S Di Lorenzo ML Di Pace E Errico ME . Influence of CaCO3 nanoparticles shape on thermal and crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2005;80: 1316 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lin ZD Huang ZZ Zhang Y Mai KC Zeng HM . Crystallization and melting behavior of nano-CaCO3/polypropylene composites modified by acrylic acid. J Appl Polym Sci. 2004;91: 244353 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lin ZD Zhang ZS Huang ZZ Mai KC . Investigation on preparation and property of nano-CaCO3/PP masterbatch modified by reactive monomers. J Appl Polym Sci. 2006;101: 390714 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mai KC Li ZJ Zeng HM . Physical properties of PP-g-AA prepared by melt extrusion and its effects on mechanical properties of PP. J Appl Polym Sci. 2001; 80: 260916 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Ma CG Rong MZ Zhang MQ Friedrich K . Irradiation-induced surface graft polymerization onto calcium carbonate nanoparticles and its toughening effects on polypropylene composites. Polym Eng Sci. 2005; 45: 52938 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wan WT Yu DM Xie YC Guo XS Zhou WD Cao JP . Effects of nanoparticle treatment on the crystallization behavior and mechanical properties of polypropylene/calcium carbonate nanocomposites. J Appl Polym Sci. 2006; 102: 348088 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Shen H Wang YH Mai KC . Non-isothermal crystallization behavior of PP/Mg(OH)2 composites modified by different compatibilizers. Thermochim Acta. 2007;457: 2734 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Causin V Marega C Saini R Marigo A Ferrara G . Crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2007; 90: 84957 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Reyes-de Vaaben S Aguilar A Avalos F Ramos-de Valle LF . Carbon nanoparticles as effective nucleating agents for polypropylene. J Therm Anal Calorim. 2008; 93: 94752 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lin ZD Qiu YX Mai KC . Crystallization and melt Behavior of Mg(OH)2/PP composites modified by functionalized polypropylene. J Appl Polym Sci. 2004;92: 361021 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Seo Y Kim J Kim KU Kim YC . Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer. 2000; 41: 263946 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Gonzalez-Montiel A Keskkula H Paul DR . Morphology of nylon 6/polypropylene blends compatibilized with maleated polypropylene. J Polym Sci Polym Phys. 1995; 33: 175167 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kawasumi M Hasegawa N Kato M Usuki A Okada A . Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules. 1997; 30: 63338 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    McNally T McShane P Nally GM Murphy WR Cook M Miller A . Rheology, phase morphology, mechanical, impact and thermal properties of polypropylene/metallocene catalysed ethylene 1-octene copolymer blends. Polymer. 2002; 43: 378593 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Huerta-Martínez BM Ramírez-Vargas E Medellín-Rodríguez FJ Cedillo García R . Compatibility mechanisms between EVA and complex impact heterophasic PP-EPx copolymers as a function of EP content. Eur Polym J. 2005; 41: 51925 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Di Lorenzo ML . Spherulite growth rates in binary polymer blends. Prog Polym Sci. 2003; 28: 66389 .

  • 33.

    Tabtiang A Venables R . The performance of selected unsaturated coatings for calcium carbonate filler in polypropylene. Eur Polym J. 2000; 36: 13748 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Zhou WH Lu M Mai KC . Isothermal crystallization, melting behavior and crystalline morphology of syndiotactic polystyrene blends with highly-impact polystyrene. Polymer. 2007; 48: 385867 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Kissinger HE . Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Stand. 1956; 57: 21721.

  • 36.

    Zhang YF Xin Z . Isothermal and nonisothermal crystallization kinetics of isotactic polypropylene nucleated with substituted aromatic heterocyclic phosphate salts. J Appl Polym Sci. 2006; 101: 330716 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Jang GS Cho WJ Ha CS . Crystallization behavior of polypropylene with or without sodium benzoate as a nucleating agent. J Polym Sci B: Polym Phys. 2001; 39: 100116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Zhao SC Cai Z Xin Z . A highly active novel β-nucleating agent for isotactic polypropylene. Polymer. 2008; 49: 274554 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Hoffman JD . Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer. 1983; 24: 326 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Monasse B Haudin JM . Growth transition and morphology change in polypropylene. Colloid Polym Sci. 1985; 263: 82231 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 58 0 0
Aug 2024 21 0 0
Sep 2024 26 0 0
Oct 2024 129 0 0
Nov 2024 77 0 0
Dec 2024 40 0 0
Jan 2025 6 0 0