View More View Less
  • 1 Institute of Isotopes of the Hungarian Academy of Sciences P.O. Box 77 1525 Budapest Hungary
  • | 2 CRC of the Hungarian Academy of Sciences at Eötvös University Laboratory of Nuclear Chemistry P.O. Box 32 1518 Budapest Hungary
Restricted access

Abstract

Tin(II/IV) phosphate was prepared by various synthetic methods. The different methods resulted in tin phosphate with different properties, i.e., different crystalline form and behaviour during thermal treatment. The prepared materials have 3 mol water of crystallisation, which they lose in different ways. Total mass loss was between 20 and 30%. This could be connected with water loss, going generally in two steps in parallel with endothermic processes. At the end of thermal treatment, tin pyrophosphate is obtained, irrespective of the method of preparation used.

  • 1.

    Harrison FG . The structural chemistry of bivalent Ge, Sn and Pb. Coord Chem Rev. 1976; 20: 136. (and references therein) .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Polarz S Smarsky B . Nanoporous materials. J Nanosci Technol. 2002; 2/ 6: 581612. (and references therein).

  • 3.

    Cheetham AK Férey G Loiseau T . Hybrid inorganic-organic materials and their application. Angew Chem Int Ed. 1999; 38: 326892 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Clearfield A , editor. Inorganic ion exchange materials, other group (IV) acid salts (Chap. 2). Boca Raton, FL: CRC Press; 1982.

  • 5.

    Weiss MA Michel E . Kationenaustausch und eindimensionales innerkristallines Quellungsvermögen bei den isotypen Verbindungen H2&M(XO4)2&·H2O; (X = P, As; M = Ti, Zr, Sn). Z Naturforsch. 1967; B22: 110012.

    • Search Google Scholar
    • Export Citation
  • 6.

    Winkler VA Thilo E . Über eine reiche saurer Verbindungen HXvP2O8 und H2XIVP2O8 mit schichtstrur. Z Anorg Allg Chem. 1966;346: 92112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Costantino U Gasperoni A . Crystalline insoluble acid salts of tetravalent metals XI. J Chromatogr. 1970; 51: 28996 .

  • 8.

    Berezovska IS Yanishpolskii VV Tartykh VA . Synthesis of mesoporous silicas inside large pores of inorganic matrix. J Therm Anal Calorim. 2008; 94(3): 64953 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Yang K Li DH Chen S Wu F . Thermal behaviour of Nickel/metal hybrid battery during charging and discharging. J Therm Anal Calorim. 2009; 95(2): 4539 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Takei T Yonesaki Y Kumada N Kiomura N . Preparation of oriented titanium phosphate and tin phosphate/polyaniline electrochemical deposition. Langmuir. 2008; 24(16): 855460 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Stenina A Aliev AD Glukhov IV Spiridonov FM Yaroslavtsev AB . Cation mobility and ion exchange in acid tin phosphate. Solid State Ionics. 2003; 162- 163: 1915 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Fuller MJ . Ion exchange properties of tin (IV) materials-IV. J Inorg Nucl Chem. 1971; 33: 55966 .

  • 13.

    Ho WH Yen SK . Electrochemical synthesis of SnHPO4/H3PO3 on Pt and forming SnP2O7. Electrochem Solid State Lett. 2005;8: C1347. and references therein .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    McDonald RC Hau HH Eriks K . Crystallographic studies of tin (II) compounds 1. Inorg Chem. 1976; 15: 7625 .

  • 15.

    McDonalds RC Eriks K . Crystallographic studies of tin (II) compounds 2. Inorg Chem. 1980; 19: 123741 .

  • 16.

    Natarajan S Easwaramoorthy M Cheetham AK Rao CNR , A three-dimensional open-framework tin (II) phosphate exhibiting reversible dehydration and ion exchange properties, Chem Commun. 1998; 15612.

    • Search Google Scholar
    • Export Citation
  • 17.

    Salami TO Marouchin K Zavalij PY Scott Oliver RJ . Three low-dimensional tin oxalate and tin phosphate materials: BING-4, -7, and -8. Chem Mater. 2002; 14(11): 48517 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Gon-Lee J Son D Kim C Park B . Electrochemical properties of tin phosphates with various mesopore ratios. J Power Sources. 2007; 172: 90812 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Schütz C Dwars T Schnorpfeil C Radnik J Menzel M Kragl U . Selective polymerization of propylene oxide by a tin phosphate coordination polymer. J Polym Sci A. 2008; 45(14): 303241 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Jiang T Lough A Ozin GA . Room temperature self-assembly of (DABCOH)2Sn3S7. Adv Mater. 1998;10: 426 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Natarajan S Attfield MP Cheetham AK . &H3N(CH2)2NH3&0.5&Sn4P3O12&: an open-framework tin(II) phosphate. Angew Chem Int Ed Engl. 1997;36: 97880 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Francis MD Tofe AJ Hiles RA Birch CG Beven JA Grabenstetter RJ . Inorganic tin: chemistry, disposition and role in nuclear medicine. Int J Nucl Med Biol. 1981; 8: 14552. (and references therein) .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Noronha OPD . Time-dependent characteristic s of Sn-complexes for preparing 99mTc labelled radiopharmaceuticals and their bioavailabilities. Nucl Med. 1978;17 (3):110-25. (and references therein).

    • Search Google Scholar
    • Export Citation
  • 24.

    Mathew M Schroeder LW Jordan TH . The crystal structure of anhydrous stannous phosphate, Sn3(PO4)2. Acta Cryst. 1977; B33: 18126.

  • 25.

    Jordan TH Schroeder LW Dickens B Brown WE . Crystal structure of stannous hydroxide phosphate. Inorg Chem. 1976; 15/ 8: 18104 .

  • 26.

    Natarajan S . Synthesis and structural characterisation of a novel tin (II) oxyphosphate. J Mater Chem. 1998; 8: 275760 .

  • 27.

    Varshney KG Rafiquee MZA Somya A . Synthesis, characterisation and adsorption behaviour of TX-100 based Sn (IV) phosphate, a new hybrid ion exchanger. J Therm Anal Calorim. 2007; 90(3): 6637 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Alberti G Torracca E Conte A . Stoichiometry of ion exchange materials containing zirconium and phosphate. J Inorg Nucl Chem. 1966; 28: 60712 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Varshney KG Jain V Agrawal A Mojumdar SC . Pyridine based Zr (IV) and Sn (IV) phosphates as new and novel intercalated ion exchangers. J Therm Anal Calorim. 2006; 86(3): 60921 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Crespi MS Zorel HE Jr Ribeiro CA . Thermal behaviour of the Ti(IV), Zr (IV), and Pb(II) complexes with 5-nitro-8-hydroxyquinoline. J Therm Anal Calorim. 2003; 72: 50714 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Surenda Nath KV Tandon SN . Synthesis and characterisation of a new crystalline tin (II) arsenophosphate ion exchanger. Can J Chem. 1990; 68: 3469 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Pozas-Tormo R Moreno-Real L Martinez-Lara M Rodrigez-Castellon E . Ion exchange reactions of n-butylamine intercalates of tin (IV) hydrogen phosphate and hydrogen uranyl phosphate with Co (III) complexes. Can J Chem. 1986; 64: 359 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Moln´r GL , editor. Prompt gamma activation analysis with neutron beams. Dordrecht: Kluwer; 2004.

  • 34.

    Van Weser JR . Phosphorus and its compounds, vol. I. NY: Interscience Co; 1958.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)