View More View Less
  • 1 Jagiellonian University Faculty of Chemistry Ingardena 3 30 060 Krakow Poland
  • | 2 Jagiellonian University Regional Laboratory for Physicochemical Analyses and Structural Research Ingardena 3 30 060 Krakow Poland
  • | 3 University of Leipzig Institute of Technical Chemistry Linnéstraße 3 04103 Leipzig Germany
Restricted access

Abstract

A series of Mg/Al hydrotalcites with tailored content of carbonate and nitrate anions was prepared using precipitation method. A part of the obtained materials was additionally crystallized in hydrothermal conditions. Different hydrotalcite phases or domains may co-exist within one sample obtained at controlled conditions. Decomposition mechanism studied in situ (DRIFT, XRD) was different for the samples with high concentration of interlayer nitrate anions than for carbonate-containing sample. TG-QMS study of hydrothermally treated samples provided more precise data for quantitative description of decomposition steps of Mg/Al hydrotalcites containing different mixtures of nitrate and carbonate anions.

  • 1.

    Allmann R . The crystal structure of pyroaurite. Acta Cryst. 1968; B24: 9727.

  • 2.

    Miyata S . US Patent 3 796 792 (1974).

  • 3.

    Cavani F Trifiro F Vaccari A . Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today. 1991; 11: 173301 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Choy JH Choi SJ Oh JM Park T . Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci. 2007; 36: 12232 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Evans DG Duan X . Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem. Commun. 2006; 48596.

    • Search Google Scholar
    • Export Citation
  • 6.

    Vial S Prevot V Forano C . Novel route for layered double hydroxides preparation by enzymatic decomposition of urea. J Phys Chem Solids. 2006; 67: 104853 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Jobb´gy M Regazzoni AE . Delamination and restacking of hybrid layered double hydroxides assessed by in situ XRD. J Coll Interf Sci. 2004; 275: 3458 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hu G O’Hare D . Unique layered double hydroxide morphologies using reverse microemulsion synthesis. J Am Chem Soc. 2005; 127: 1780813 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Benito P Labajos FM Rocha J Rives V . Influence of microwave radiation on the textural properties of layered double hydroxides. Microporous Mesoporous Mater. 2006; 94: 14858 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Benito P Guinea I Labajos FM Rocha J Rives V . Microwave-hydrothermally aged Zn,Al hydrotalcite-like compounds: influence of the composition and the irradiation conditions. Microporous Mesoporous Mater. 2008; 110: 292302 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Abelló S Pérez-Ramírez J . Tuning nanomaterials’ characteristics by a miniaturized in-line dispersion-precipitation method: application to hydrotalcite synthesis. Adv Mater. 2006; 18: 24369 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Xu ZP Zeng HC . Abrupt structural transformation in hydrotalcite-like compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions. J Phys Chem B. 2001; 105: 17439 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Pérez-Ramírez J Abelló S . Thermal decomposition of hydrotalcite-like compounds studied by a novel tapered element oscillating microbalance (TEOM). Comparison with TGA and DTA. Thermochim Acta. 2006; 444: 7582 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Chmielarz L Ku&trowski P Rafalska-&asocha A Dziembaj R . Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems. Thermochim Acta. 2003; 395: 22536 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Yun SK Pinnavaia TJ . Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chem Mater. 1995; 7: 34854 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Rey F Fornes V Rojo JM . Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study. J Chem Soc Faraday Trans. 1992; 88: 22338 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Palmer SJ Spratt HJ Frost RL . Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009; 95: 1239 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hibino T Yamashita Y Kosuge K Tsunashima A . Decarbonation behaviour of Mg-Al-CO3 hydrotalcite-like compounds during heat treatment. Clays Clay Miner. 1995;43: 42732 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Frost RL Martens W Ding Z Kloprogge JT . DSC and high-resolution TG of synthesized hydrotalcites of Mg and Zn. J Therm Anal Calorim. 2003; 71: 42938 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Vagvölgyi V Palmer SJ Kristof J Frost RL Horvath E . Mechanism for hydrotalcite decomposition: a controlled rate thermal analysis study. J Coll Interf Sci. 2008; 318: 3028 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    van Bokhoven JA Roelofs JCAA de Jong KP Koningsberger DC . Unique structural properties of the Mg-Al hydrotalcite solid base catalyst: an in situ study using Mg and Al K-edge XAFS during calcination and rehydration. Chem Eur J. 2001; 7: 125865 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kanezaki E . Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG. Solid State Ionics. 1998; 106: 27984 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kanezaki E . Direct observation of a metastable solid phase of Mg/Al/CO3-layered double hydroxide by means of high temperature in situ powder XRD and DTA/TG. Inorg Chem. 1998;37: 258890 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Millange F Walton RI O’Hare D . Time-resolved in situ X-ray diffraction study of the liquid-phase reconstructitm of Mg-Al-carboaate hydrotalcite-like compounds. J Mater Chem. 2000; 10: 171320 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Yang W Kim Y Liu PKT Sahimi M Tsotsis TT . A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide. Chem Eng Sci. 2002;57: 294553 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kim Y Yang W Liu PKT Sahimi M Tsotsis TT . Thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide: sorption reversibility aspects. Ind Eng Chem Res. 2004;43: 455970 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Pérez-Ramírez J Abelló S van der Pers NM . Memory effect of activated Mg-Al hydrotalcite: in situ XRD studies during decomposition and gas-phase reconstruction. Chem Eur J. 2007; 13: 8708 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Pérez-Ramírez J Mul G Kapteijn F Moulijn JA . In situ investigation of the thermal decomposition of Co-Al hydrotalcite in different atmospheres. J Mater Chem. 2001; 11: 82130 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Abelló S Medina F Tichit D Pérez-Ramírez J Groen JC Sueiras JE , et al. Aldol condensations over reconstructed Mg-Al hydrotalcites: structure-activity relationships related to the rehydration method. Chem Eur J. 2005; 11: 72839 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Xu ZP Zeng HC . Decomposition pathways of hydrotalcite-like compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions. Chem Mater. 2001; 13: 456472 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    W&grzyn A Rafalska-&asocha A Dudek B Dziembaj R . Nanostructured V-containing hydrotalcite-like materials obtained by non-stoichiometric anion exchange as precursors of catalysts for oxidative dehydrogenation of n-butane. Catal Today. 2006; 116: 7481 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Allada RK Pless JD Nenoff TM Navrotsky A . Thermochemistry of hydrotalcite-like phases intercalated with CO3 2-, NO3 -, Cl-, I-, and ReO4 -. Chem Mater. 2005;17: 24559 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Kloprogge JT Wharton D Hickey L Frost RL . Infrared and Raman study of interlayer anions CO3 2-, NO3 -, SO4 2- and ClO4 - in Mg/Al-hydrotalcite. Am Mineral. 2002;87: 6239.

    • Search Google Scholar
    • Export Citation
  • 34.

    Kloprogge JT Ruan H Frost RL . Near-infrared spectroscopic study of basic aluminum sulfate and nitrate. J Mater Sci. 2001; 36: 6037 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Hutson ND Speakman SA Payzant EA . Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chem Mater. 2006;16: 413543 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Di Cosimo JI Diez VK Xu M Iglesia E Apesteguia CR . Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal. 1998; 178: 499510 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Miyata S . The syntheses of hydrotalcite-like compounds and their structures and physicochemical properties I: the systems Mg2&-Al3&-NO3 , Mg2&-Al3&-Cl, Mg2&-Al3&-ClO4 , Ni2&-Al3&-Cl and Zn2&-Al3&-Cl. Clays Clay Miner. 1975;23: 36975 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 0 0 0
Jun 2021 3 0 0
Jul 2021 2 1 1
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0