Authors:
Hsiao-Fang Lee The Pennsylvania State University Department of Mechanical and Nuclear Engineering 317A Leonhard Building University Park PA 16802 USA

Search for other papers by Hsiao-Fang Lee in
Current site
Google Scholar
PubMed
Close
,
Benedict Samuel The Pennsylvania State University Department of Mechanical and Nuclear Engineering 317A Leonhard Building University Park PA 16802 USA

Search for other papers by Benedict Samuel in
Current site
Google Scholar
PubMed
Close
, and
M. Haque The Pennsylvania State University Department of Mechanical and Nuclear Engineering 317A Leonhard Building University Park PA 16802 USA

Search for other papers by M. Haque in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present a new analytical model for thermal conductivity measurement of one-dimensional nanostructures on substrates. The model expands the capability of the conventional 3ω technique, to make it versatile with both in and out of plane thermal conductivity measurement on specimens either freestanding or attached to substrates. We demonstrate the model on both conducting (aluminum) and semi-conducting (focused ion beam deposited platinum) specimens. The agreement with the established values in the literature suggests the superiority of this technique in terms of convenience and robustness of measurement.

  • 1.

    Cahill DG Ford WK Goodson KE Mahan GD Majumdar A Maris HJ , et al. Nanoscale thermal transport. J Appl Phys. 2003; 93(2): 793818 .

  • 2.

    Yoshino H Papavassiliou G Murata K . Low-dimensional organic conductors as thermoelectric materials. J Therm Anal Calorim. 2008; 92(2): 45760 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Stewart D Norris PM . Size effects on the thermal conductivity of thin metallic wires: microscale implications. Microscale Thermophys Eng. 2000; 4(2): 89101 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Liang LH Li BW . Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B. 2006; 73(15): 4 .

  • 5.

    Sparavigna A . Lattice specific heat of carbon nanotubes. J Therm Anal Calorim. 2008; 93(3): 9836 .

  • 6.

    Li D Wu Y Fan R Yang P Majumdar A . Thermal conductivity of Si/SiGe superlattice nanowires. Appl Phys Lett. 2003; 83(15): 31868 .

  • 7.

    Borca-Tasciuc T Kumar AR Chen G . Data reduction in 3 omega method for thin-film thermal conductivity determination. Rev Sci Instrum. 2001; 72(4): 213947 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Jansen E Obermeier E . Thermal conductivity measurements on thin films based on micromechanical devices. J Micromech Microeng. 1996; 6(1): 11821 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Shi L Li D Yu C Jang W Kim D Yao Z , et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J Heat Transf. 2003; 125(5): 8818 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Tian F Sun L Venart J Prasad R . Thermal conductivity and thermal diffusivity of poly(acrylic acid) by transient hot wire technique. J Therm Anal Calorim. 2009; 96(1): 6771 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Borca-Tasciuc T Chen G . Thermal conductivity: theory, properties and applications. New York: Kluwer Academic/Plenum Publishers, 2004.

  • 12.

    Cahill DG Katiyar M Abelson JR . Thermal conductivity of a-Si:H thin films. Phys Rev B. 1994; 50(9): 6077 .

  • 13.

    Cahill DG . Thermal conductivity measurement from 30 to 750 K: the 3 omega method. Rev Sci Instrum. 1990; 61(2): 8028 .

  • 14.

    Lu L Yi W Zhang DL . 3 omega method for specific heat and thermal conductivity measurements. Rev Sci Instrum. 2001; 72(7): 29963003 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Marzi GD Iacopino D Quinn AJ Redmond G . Probing intrinsic transport properties of single metal nanowires: direct-write contact formation using a focused ion beam. J Appl Phys. 2004; 96(6): 345862 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Langford RM Wang TX Ozkaya D . Reducing the resistivity of electron and ion beam assisted deposited Pt. Microelectron Eng. 2007; 84 (5-8): 7848 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 44 0 0
Aug 2024 49 0 0
Sep 2024 35 0 0
Oct 2024 109 0 0
Nov 2024 34 0 0
Dec 2024 9 0 0
Jan 2025 5 0 0