View More View Less
  • 1 The Pennsylvania State University Department of Mechanical and Nuclear Engineering 317A Leonhard Building University Park PA 16802 USA
Restricted access

Abstract

We present a new analytical model for thermal conductivity measurement of one-dimensional nanostructures on substrates. The model expands the capability of the conventional 3ω technique, to make it versatile with both in and out of plane thermal conductivity measurement on specimens either freestanding or attached to substrates. We demonstrate the model on both conducting (aluminum) and semi-conducting (focused ion beam deposited platinum) specimens. The agreement with the established values in the literature suggests the superiority of this technique in terms of convenience and robustness of measurement.

  • 1.

    Cahill DG Ford WK Goodson KE Mahan GD Majumdar A Maris HJ , et al. Nanoscale thermal transport. J Appl Phys. 2003; 93(2): 793818 .

  • 2.

    Yoshino H Papavassiliou G Murata K . Low-dimensional organic conductors as thermoelectric materials. J Therm Anal Calorim. 2008; 92(2): 45760 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Stewart D Norris PM . Size effects on the thermal conductivity of thin metallic wires: microscale implications. Microscale Thermophys Eng. 2000; 4(2): 89101 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Liang LH Li BW . Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B. 2006; 73(15): 4 .

  • 5.

    Sparavigna A . Lattice specific heat of carbon nanotubes. J Therm Anal Calorim. 2008; 93(3): 9836 .

  • 6.

    Li D Wu Y Fan R Yang P Majumdar A . Thermal conductivity of Si/SiGe superlattice nanowires. Appl Phys Lett. 2003; 83(15): 31868 .

  • 7.

    Borca-Tasciuc T Kumar AR Chen G . Data reduction in 3 omega method for thin-film thermal conductivity determination. Rev Sci Instrum. 2001; 72(4): 213947 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Jansen E Obermeier E . Thermal conductivity measurements on thin films based on micromechanical devices. J Micromech Microeng. 1996; 6(1): 11821 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Shi L Li D Yu C Jang W Kim D Yao Z , et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J Heat Transf. 2003; 125(5): 8818 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Tian F Sun L Venart J Prasad R . Thermal conductivity and thermal diffusivity of poly(acrylic acid) by transient hot wire technique. J Therm Anal Calorim. 2009; 96(1): 6771 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Borca-Tasciuc T Chen G . Thermal conductivity: theory, properties and applications. New York: Kluwer Academic/Plenum Publishers, 2004.

  • 12.

    Cahill DG Katiyar M Abelson JR . Thermal conductivity of a-Si:H thin films. Phys Rev B. 1994; 50(9): 6077 .

  • 13.

    Cahill DG . Thermal conductivity measurement from 30 to 750 K: the 3 omega method. Rev Sci Instrum. 1990; 61(2): 8028 .

  • 14.

    Lu L Yi W Zhang DL . 3 omega method for specific heat and thermal conductivity measurements. Rev Sci Instrum. 2001; 72(7): 29963003 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Marzi GD Iacopino D Quinn AJ Redmond G . Probing intrinsic transport properties of single metal nanowires: direct-write contact formation using a focused ion beam. J Appl Phys. 2004; 96(6): 345862 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Langford RM Wang TX Ozkaya D . Reducing the resistivity of electron and ion beam assisted deposited Pt. Microelectron Eng. 2007; 84 (5-8): 7848 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 4 0 0
Sep 2021 1 0 0
Oct 2021 2 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0