View More View Less
  • 1 King Mongkut's Institute of Technology Ladkrabang Chumphon Campus, 17/1 M. 6 Pha, Thiew District Chumphon 86160 Thailand
  • | 2 King Mongkut's Institute of Technology Ladkrabang Department of Chemistry, Faculty of Science Bangkok 10520 Thailand
Restricted access

Abstract

The kinetics and thermodynamics of the thermal dehydration of aluminum phosphate monohydrate, AlPO4 · H2O were studied using thermogravimetry (TG-DTG-DTA) at four heating rates in dry air atmosphere. The activation energies of the dehydration step of AlPO4 · H2O were calculated through the methods of Friedman (FR) and Flynn–Wall–Ozawa (FWO) and the possible conversion function has been estimated through the Achar and Li–Tang equations. The independent activation energies on extent of conversions and the better kinetic model of the dehydration reaction for AlPO4 · H2O indicate single kinetic mechanism and the F2.05 model as a simple n-order reaction of “chemical process or mechanism no-invoking equation”, respectively. The positive values of ΔH& and ΔG& for the dehydration reaction show that it is endothermic and non-spontaneous process and it is connected with the introduction of heat. The kinetic and thermodynamic functions calculated for the dehydration reaction by different techniques and methods were found to be consistent.

  • 1.

    Arjona MA Alario Franco MA . Kinetics of the thermal dehydration of variscite and specific surface area of the solid decomposition products. J Therm Anal Cal. 1973; 5: 31928 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Stojakovic D Rajic N Sajic S Logar NZ Kaucic V . A kinetic study of the thermal degradation of 3-methylaminopropylamine inside AlPO4-21. J Therm Anal Cal. 2007;87: 33743 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lagno F Demopoulos GP . Synthesis of hydrated aluminum phosphate, AlPO4·1.5H2O (AlPO4−H3), by controlled reactive crystallization in sulfate media. Ind Eng Chem Res. 2005;44: 80338 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Youssif MI Mohamed FSh Aziz MS . Chemical and physical properties of Al1−xFexPO4 alloys: Part I. Thermal stability, magnetic properties and related electrical conductivity. Mater Chem Phys. 2004;83: 250254 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Guti′errez-Mora F Goretta KC Singh D Routbort JL Sambasivan S Steiner KA , et al. High-temperature deformation of amorphous AlPO4-based nano-composites. J Eur Ceram Soc. 2006;26: 117983 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Mostafa MR Ahmed FSH . Characterization and catalytic behaviour of Co3(PO4)2-AlPO4 catalysts. Adsorp Sci Technol. 1998;16: 28593.

  • 7.

    Campelo JM Jaraba M Luna D Luque R Marinas JM Romero AA , et al. Effect of phosphate precursor and organic additives on the structural and catalytic properties of amorphous mesoporous AlPO4 materials. Mater Chem Mater. 2003;15: 335264 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Boonchom B Youngme S Srithanratana T Danvirutai C . Synthesis of AlPO4 and kinetics of thermal decomposition of AlPO4·H2O-H4 precursor. J Therm Anal Cal. 2008;91: 5116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Boonchom B Danvirutai C . Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Cal (Accepted manuscript).

    • Search Google Scholar
    • Export Citation
  • 10.

    Friedman HL . Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci C. 1963; 6: 183.

  • 11.

    Flynn H Wall LA . Quick direct method for the determination of activation energy from thermogravimetric data. J Therm Anal. 1983; 27: 95 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ozawa TA . A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965; 38: 18816 .

  • 13.

    Achar BNN Bridley GW Sharp JH . Kinetics and mechanism of dehydroxylation process.III. Applications and limitations of dynamic methods. Proc Int Clay Conf, Jerusalem. 1966; 1: 6773.

    • Search Google Scholar
    • Export Citation
  • 14.

    Tang W Liu Y Zhang H Wang C . New approximate formula for Arrhenius temperature integral. Thermaochim Acta. 2003; 408: 3943 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Scaccia S Carewska M Bartolomeo AD Prosini PP . Thermoanalytical investigation of nanocrystalline iron (II) phosphate obtained by spontaneous precipitation from aqueous solutions. Thermochim Acta. 2003; 397: 13541 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gabal MA El-Bellihi AA Ata-Allah SS . Effect of calcination temperature on Co(II) oxalate dihydrate−iron(II) oxalate dihydrate mixture DTA− TG, XRD, Mössbauer, FT-IR and SEM studies (Part II). Mater Chem Physics. 2003; 81: 8492 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Vlaev L Nedelchev N Gyurova K Zagorcheva M . A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008; 81: 25362 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Vlase T Vlase G Doca M Doca N . Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Cal. 2003; 72: 597604 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Rokita M Handke M Mozgawa W . Spectroscopic studies of polymorphs of AlPO4 and SiO2. J Mol Struct. 1998;450: 2137 .

  • 20.

    Müller G Bódis J Eder-Mirth G Kornatowski J Lercher JA . In situ FT-IR microscopic investigation of metal substituted AlPO4-5 single crystals. J Mol Struct. 1997; 410-411: 1738 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Colthup NB Daly LH Wiberley SE . Introduction to infrared and Raman spectroscopy. New York: Academic Press; 1964.

  • 22.

    Vlaev LT Nikolova MM Gospodinov GG . Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004; 177: 26639 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Budrugeac P Segal E . Applicability of the Kissinger equation in thermal analysis. J Therm Anal Cal. 2007; 88: 7037 .

  • 24.

    Budrugeac P Mu&at V Segal E . Non-isothermal kinetic study on the decomposition of Zn acetate-based sol-gel precursor Part II. The application of the IKP method. J Therm Anal Cal. 2007; 88: 699702 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Zhang K Hong J Cao G Zhan D Tao Y Cong C . The kinetics of thermal dehydration of copper(II) acetate monohydrate in air. Thermochim Acta. 2005; 437: 1459 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hong J Guo G Zhang K . Kinetics and mechanism of non-isothermal dehydration of nickel acetate tetrahydrate in air. J Anal Appl Pyrolysis. 2006; 2: 1115 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Gao X Dollimore D . The thermal decomposition of oxalates. Part 26: a kinetic study of the thermal decomposition of manganese (II) oxalate dihydrate. Thermochim Acta. 1993; 215: 4763 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Gabal MA . Kinetics of the thermal decomposition of CuC2O4-ZnC2O4 mixture in air. Thermochim Acta. 2003;402: 199208 .

  • 29.

    Boonchom B Danvirutai C . Thermal decomposition kinetics of FePO4·3H2O precursor to synthetize spherical nanoparticles FePO4. Ind Eng Chem Res. 2007;46: 90716 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    &est´k J. . Thermodynamical properties of solids. Academia Prague; 1984.

  • 31.

    Cordes HM . Preexponential factors for solid-state thermal decomposition. J Phys Chem. 1968; 72: 21859 .

  • 32.

    Criado JM Pérez-Maqueda LA S´nchez-Jiménez PE . Dependence of the preexponential factor on temperature. J Therm Anal Cal. 2005; 82: 6715 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Boonchom B . Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008; 53: 15538 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)