Authors:
S. Genieva Assen Zlatarov University Department of Physical Chemistry 8010 Bourgas Bulgaria

Search for other papers by S. Genieva in
Current site
Google Scholar
PubMed
Close
,
L. Vlaev Assen Zlatarov University Department of Physical Chemistry 8010 Bourgas Bulgaria

Search for other papers by L. Vlaev in
Current site
Google Scholar
PubMed
Close
, and
A. Atanassov Assen Zlatarov University Department of Materials Science 8010 Bourgas Bulgaria

Search for other papers by A. Atanassov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The thermooxidative degradation kinetics of poly(tetrafluoroethene) (PTFE) in air flow has been studied at different heating rates (6, 10, 12 and 15 K min−1) by non-isothermal differential thermal analysis (DTA). Six calculation procedures based on single TG curves and iso-conversional method, as well as 27 mechanism functions were used. The comparison of the results obtained with these calculation procedures showed that they strongly depend on the selection of proper mechanism function for the process. Therefore, it is very important to determine the most probable mechanism function. In this respect the iso-conversional calculation procedure turned out to be more appropriate. In the present work, the values of apparent activation energy E, pre-exponential factor A in Arrhenius equation, as well as the changes of entropy ΔS, enthalpy ΔH and free Gibbs energy ΔG for the formation of the activated complex from the reagent are calculated. All calculations were performed using programs compiled by ourselves.

  • 1.

    Conesa JA Font R . Polytetrafluoroethylene decomposition in air and nitrogen. Polym Eng Sci. 2001; 41: 213747 .

  • 2.

    Simon CM Kaminsky W . Chemical recycling of polytetrafluoroethylene by pyrolysis. Polym Degrad Stab. 1998; 62: 17 .

  • 3.

    Baker BB Kasprzak DJ . Thermal degradation of commercial fluoropolymers in air. Polym Degrad Stab. 1993; 42: 1818 .

  • 4.

    Ksiazczak A Boniuk H Cudzilo S . Thermal decomposition of PTFE in the presence of silicon, calcium silicide, ferrosilicon and iron. J Therm Anal Calorim. 2003; 74: 56974 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    van der Walt IJ Neomagus HWJP Nel JT Bruinsma OSL Crouse PL . A kinetic expression for the pyrolytic decomposition of polytetrafluoroethylene. J Fluorine Chem. 2008; 129: 3148 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Garcia AN Viciano N Font R . Products obtained in the fuel-rich combustion of PTFE at high temperature. J Anal Appl Pyrolysis. 2007; 80: 8591 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Meissner E Worolewska A Milchert E . Technological parameters of pyrolysis of waste polytetrafluoroethylene. Polym Degrad Stab. 2004; 83: 16372 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ebrachimi-Kahrizsangi R Abbasi MH . Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferrous Met Soc China. 2008; 18: 21721 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Lipskis AA Kviklis AV Lipskene AM Machynlis AN . Calculation of kinetic parameters of the thermal decomposition of polymers. Polym Sci USSR. 1976; 18: 48995 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Budrugeac P Segal E . Thermooxidative degradation of an unsaturated polyester resin. J Therm Anal. 1997; 49: 18391 .

  • 11.

    Chiriac M Rosu A Dumitras M Odochian L . Some aspects of the thermokinetic nonisothermal study on the thermooxidative degradation polytetrafluotoethylene containing additives. Iranian Ploym J. 2003; 12: 16570.

    • Search Google Scholar
    • Export Citation
  • 12.

    Howell B Zhang J . Thermal degradation of vinylidene chloride/vinyl chloride copolymers in the presence of N-substituted maleimides. J Therm Anal Calorim. 2006; 83: 836 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Vyazovkin S . Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006; 83: 4551 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Vlaev LT Georgieva VG Genieva SD . Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J Therm Anal Calorim. 2007; 88(3): 80512 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ozawa T . A new method of analyzing thermogravimetric data. Bul Chem Soc Japan. 1965; 38: 18816 .

  • 16.

    Paik P Kar KK . Kinetics of thermal degradation and estimation of lifetime for polypropylene particle: effect of particle size. Polym Degrad Stab. 2008: 93: 2435 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Flynn JH . The ‘Temperature Integral’—its use and abuse. Thermochim Acta. 1997; 300: 8392 .

  • 18.

    Chrissafis K . Kinetics of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009; 95: 27383 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Cadenato A Morancho JM Fernandez-Francos X Salla JM Ramis X . Comparative kinetic study of the non-isothermal thermal curing of bis-GMA/TEGDMA systems. J Therm Anal Calorim. 2007; 89: 23344 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Popescu C . Integral method to analyze the kinetics of heterogeneous reactions under nonisothermal conditions A variant on the Ozawa-Flynn-Wall method. Thermochim Acta. 1996; 285: 30923 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Šest´k J Berggren G . Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971; 3: 112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Liqing L Donghua C . Application of iso-temperature method of multiple rate to kinetic analysis. J Therm Anal Calorim. 2004; 78: 28393 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Heide K Höland W Gölker H Seyfarth K Müller B Sauer R . Die bestimmung kinetischer parameter endothermer zersetzungsreaktionen unter nicht-isothermen bedingungen. Thermochim Acta. 1975; 13: 36578 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Zhang JJ Ge LG Zha XL Dai YJ Chen HL Mo LP . Thermal decomposition kinetics of the Zn(II) complex with norfloxacin in static air atmosphere. J Therm Anal Calorim. 1999; 58: 26978 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Horowitz HH Metzger G . A new analysis of thermogravimetric traces. Anal Chem. 1963; 35: 14648 .

  • 26.

    Coats AW Redfern JP . Kinetic parameters from thermogravimetric data. Nature (London). 1964; 201: 689 .

  • 27.

    Madhusudanan PM Krishnan K Ninan KN . New approximation for the p(x) function in the evaluation of non-isothermal kinetic data. Thermochim Acta. 1986; 97: 189201 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Madhusudanan PM Krishnan K Ninan KN . New equations for kinetic analysis of nonisothermal reactions. Thermochim Acta. 1993; 221: 1321 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Tang W Liu Y Zhang H Wang C . New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003; 408: 3943 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Wanjun T Yuwen L Hen Z Zhiyong W Cunxin W . New temperature integral approximate formula for non-isothermal kinetic analysis. J Therm Anal Calorim. 2003; 74: 30915 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Budrugeac P Segal E . Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid-gas reactions. Int J Chem Kinet. 2001; 33: 56473 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Gao Z Amasaki I Nakada M . A description of kinetics of thermal decomposition of calcium oxalate monohydrate by means of the accommodated Rn model. Thermochim Acta. 2002; 385: 95103 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Chunxiu G Yufang S Donghua C . Comparative method to evaluate reliable kinetic triplets of thermal decomposition reactions. J Therm Anal Calorim. 2006; 76: 20316 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Su T-T Jiang H Gong H . Thermal stabilities and the thermal degradation kinetics of poly(&-Caprolactone). Polymer-Plastics Technol Eng. 2008; 47: 398403 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Senum GI Yang RT . Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977; 11: 4457 .

  • 36.

    Cordes HF . The preexponential factors for solid-state thermal decomposition. J Phys Chem. 1968; 72: 21859 .

  • 37.

    Criado JM Pérez-Maqueda LA S´nchez-Jiménez PE . Dependence of the preexponential factor on temperature. Errors in the activation energies calculated by assuming that A is constant. J Therm Anal Calorim. 2005; 82: 6715 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Nikolaev AV Logvinenko VA Gorbatchov VM Miachina LI . On the correction of some models regarding the relationship of the kinetic parameters from the conditions of the nonisothermic experiment. Thermal analysis. In: Proceedings of the fourth ICTA, Budapest, Hungary, vol. 1; 1974. p. 4755.

    • Search Google Scholar
    • Export Citation
  • 39.

    Zmijevski T Pysiak J . Compensation effect in thermal dissociation processes. Thermal analysis. In: Proceedings of the fourth ICTA, Budapest, Hungary, vol. 1; 1974. p. 20511.

    • Search Google Scholar
    • Export Citation
  • 40.

    Koga N Tanaka H . A kinetic compensation effect established for the thermal decomposition of a solid. J Therm Anal Calorim. 1991; 37: 34763 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Turmanova SCh Genieva SD Dimitrova AS Vlaev LT . Non-isothermal degradation kinetics of filled with rice husk ash polypropene composites. Express Polym Lett. 2008; 2: 13346 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Dias DS Crespi MS Ribeiro CA Fernandes JLS Cerqueira HMG . Application of nonisothermal cure kinetics on the interaction of poly(ethylene terephthalate)—Alkyd resin paints. J Therm Anal Calorim. 2008; 91: 40912 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Dias DS Crespi MS Ribeiro CA . Non-isothermal decomposition kinetics of the interaction of poly(ethylene terephthalate) with alkyd varnish. J Therm Anal Calorim. 2008; 94: 53943 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Ruvolo-Filho A Curti PS . Chemical kinetic model and thermodynamic compensation effect of alkaline hydrolysis of waste poly(ethylene terephthalate) in nonaqueous ethylene glycol solution. Ind. Eng Chem Res. 2006; 45: 798596 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Frost AA Pearson RG . Kinetics and mechanism of chemical reactions. New York: John Wiley and Sons; 1961.

  • 46.

    Sokolskii DV Druz VA . Vvedenie v teoriy geterogenogo kataliza. Moscow: Vischaya Shkola; 1981. (in Russian).

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 43 0 0
Aug 2024 48 0 0
Sep 2024 72 0 1
Oct 2024 167 0 0
Nov 2024 95 0 0
Dec 2024 60 0 0
Jan 2025 16 0 0