Authors:
Bo Song Southwest Jiaotong University Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering Chengdu 610031 China

Search for other papers by Bo Song in
Current site
Google Scholar
PubMed
Close
,
Yong Wang Southwest Jiaotong University Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering Chengdu 610031 China

Search for other papers by Yong Wang in
Current site
Google Scholar
PubMed
Close
,
Hongwei Bai Southwest Jiaotong University Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering Chengdu 610031 China

Search for other papers by Hongwei Bai in
Current site
Google Scholar
PubMed
Close
,
Li Liu Southwest Jiaotong University Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering Chengdu 610031 China

Search for other papers by Li Liu in
Current site
Google Scholar
PubMed
Close
,
Yanli Li Southwest Jiaotong University Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering Chengdu 610031 China

Search for other papers by Yanli Li in
Current site
Google Scholar
PubMed
Close
,
Jihong Zhang Southwest Jiaotong University Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering Chengdu 610031 China

Search for other papers by Jihong Zhang in
Current site
Google Scholar
PubMed
Close
, and
Zuowan Zhou Southwest Jiaotong University Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering Chengdu 610031 China

Search for other papers by Zuowan Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper reports the crystallization behavior of maleic anhydride grafted poly(propylene) (PP-MA) with an aryl amide derivative (TMB-5) as β-phase nucleating agent (β-NA). The isothermal and nonisothermal crystallization behaviors of PP-MA and nucleated PP-MA are comparatively researched based on the concentration of β-NA of 0.2 wt%. Subsequent melting behaviors after isothermal and nonisothermal crystallization process are also investigated to explore the crystalline structures formed during the crystallization. The results indicate that TMB-5 is an efficient β-NA in influencing the crystallization of PP-MA through increasing the crystallization rate and decreasing the fold surface free energy, leading to large amounts of β-phase formation during the crystallization process.

  • 1.

    Martin O Roman C Karel S . Tailoring of three-phase crystalline systems in isotactic poly(propylene). Macromol Rapid Commun. 2005; 26: 12537 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Stocker W Schumacher M Graff S . Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly(propylene), β phase. Macromolecules. 1998; 31: 80714 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Huo H Jiang SC An LJ . Influence of shear on crystallization behavior of β-phase in polypropylene with β-nucleating agent. Macromolecules. 2004; 37: 247883 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Fujiwara Y . Double-melting behavior of the β-phase of isotactic polypropylene. Colloid Polym Sci. 1975; 253: 27382 .

  • 5.

    Lovinger AJ Chua JO Gryte CC . Studies on the & and β forms of isotactic polypropylene by crystallization in a temperature gradient. J Polym Sci Polym Phys Ed. 1977; 15: 64156 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Yoshida H . Dynamic analysis of the melting behavior of polymers showing polymorphism observed by simultaneous DSC/X-ray diffraction measurements. Thermochim Acta. 1995; 267: 23948 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Leugering HJ Kirsch G . Effect of crystallization from oriented melts on crystal structure of isotactic polypropylene. Angew Makromol Chem. 1973; 33: 1723 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Varga J Karger-Kocsis J . Interfacial morphologies in carbon fibre-reinforced polypropylene microcomposites. Polymer. 1995; 36: 487781.

    • Search Google Scholar
    • Export Citation
  • 9.

    Varga J Ehrenstein GW . Formation of β-modification of isotactic polypropylene in its late stage of crystallization. Polymer. 1996; 37: 595963 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Varga J Karger-Kocsis J . Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci B. 1996; 34: 65772 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Zhang J Shen KZ Na S . Vibration-induced change of crystal structure in isotactic polypropylene and its improved mechanical properties. J Polym Sci B. 2004; 42: 238590 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Mathieu C Thierry A Wittmann JC Lotz B . “Multiple” nucleation of the (010) contact face of isotactic polypropylene, & phase. Polymer. 2000; 41: 724153 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Romanini D Guidetti GP . Proceedings of polymer chemistry in extruder, Lie`ge, Belgium: Societe Royale de Chimie, 1990.

  • 14.

    Bai HW Wang Y Liu L Zhang JH Han L . Nonisothermal crystallization behaviors of polypropylene with &/β nucleating agents. J Polym Sci B. 2008; 46: 185367 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Menyh´rd A Faludi G Varga J . β-Crystallisation tendency and structure of polypropylene grafted by maleic anhydride and its blends with isotactic polypropylene. J Therm Anal Calorim. 2008; 93: 93745 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Turner-Jones A Aizlewood JM Beckett DR . Crystalline forms of isotactic polypropylene. Makromol Chem. 1964; 75: 13454 .

  • 17.

    Romankiewicz A Tomasz S Brostow W . Structural characterization of &- and β-nucleated isotactic polypropylene. Polym Int. 2004; 53: 208691 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Varga J . β-modification of polypropylene and its two-component sysytems. J Therm Anal Calorim. 1989; 35: 1891912 .

  • 19.

    Marco C Ellis G G&mez MA Arribas JM . Isothermal crystallization behavior and melting characteristics of injection sample of nucleated polypropylene. J Appl Polym Sci. 2003; 88: 226174 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Avrami M . Kinetics of phase change. III. Granulation, phase change and microstructure. J Chem Phys. 1941; 9: 17784 .

  • 21.

    Avalos F Lopez-Manchado MA Arroyo M . Crystallization kinetics of polypropylene III. Ternary composites based on polypropylene/low density polyethylene blend matrices and short glass fibres. Polymer. 1998; 39: 61738 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lauritzen JI Hoffman JD . Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys. 1973; 44: 434052 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hoffman JD Davis GT Lauritzen JI . The rate of crystallization of linear polymers with chain folding, chap. 7. In: Treatise on solid state chemistry, vol. III. New York: Plenum Press; 1976.

    • Search Google Scholar
    • Export Citation
  • 24.

    Karger-Kocsis J . Crystallization, melting and supermolecular structure of isotactic polypropylene, chap.3 and Nucleating of polypropylene, chap. 4. In: Poly(propylene) structure, blends and composites, vol. 1. 1st ed. London: Chapman and Hall; 1995.

    • Search Google Scholar
    • Export Citation
  • 25.

    Karger-Kocsis J Varga J Ehrenstein GW . Comparison of the fracture and failure behavior of injection-molded &- and β-polypropylene in high-speed three-point bending tests. J Appl Polym Sci. 1997; 64: 205766 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hoffman JD . Regime III crystallization in melt-crystallized polymers: the variable cluster model of chain folding. Polymer. 1983; 24: 326 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Beck HN . Heterogeneous nucleating agents for crystallization of vinylidence chloride-vinyl chloride copolymers. J Appl Polym Sci. 1975; 19: 3716 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Bershtein VA Egorov VM . Differential scanning calorimetry of polymers: physics, chemistry, analysis. London: Ellis Horwood; 1994.

  • 29.

    Cho K Li FK Choi J . Crystallization and melting behavior of polypropylene and maleated polypropylene blends. Polymer. 1999; 40: 171929 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Seo Y Kim J Kim KU Kim YC . Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer. 2000; 41: 263946 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 42 0 0
Sep 2024 19 0 0
Oct 2024 185 0 0
Nov 2024 44 0 0
Dec 2024 18 0 0
Jan 2025 11 0 0
Feb 2025 0 0 0