Authors:
M. Sovizi Malek Ashtar University of Technology Faculty of Material and Manufacturing Technologies P.O. Box 16765-3345 Tehran Iran

Search for other papers by M. Sovizi in
Current site
Google Scholar
PubMed
Close
and
K. Anbaz Imam Hossein University Department of Chemistry Tehran Iran

Search for other papers by K. Anbaz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, the thermal behaviours of two organophosphorous compounds, N,N-dimethyl-N′,N′-diphenylphosphorodihydrazidic (NDD) and diphenyl amidophosphate (DPA), were studied by thermogravimetery (TG), differential thermal analysis (DTA) and differential scanning calorimetery (DSC) techniques under non-isothermal conditions. The results showed that NDD melts about 185 °C before it decomposes. NDD decomposition occurs in two continuous steps, in the 190–410 °C temperature range. First thermal degradation stage for NDD results a broad exothermic peak in the DTA curve that is continued with a small exothermic peak at the end of decomposition process. On the other hand, applying TG-DTA techniques indicates that DPA melts about 150 °C before it decomposes. This compound decomposes in the temperature range of 230 to 330 °C in two steps. These steps are endothermic and exothermic, respectively. Activation energy and pre-exponential factor for the first step of decomposition of each compound were found by means of Kissinger method and were verified by Ozawa–Flynn–Wall method. Activation energy obtained by Kissinger method for the first stage of NDD and DPA decompositions are 138 and 170 KJ mol−1, respectively. Finally, the thermodynamic parameters (ΔG&, ΔH& and ΔS&) for first step decomposition of investigated organophosphorous were determined.

  • 1.

    Jamal E Shashidhar N Adrea M William S . Prediction of organophosphorus acetylcholinesterase inhibition using three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. Toxicol Sci. 2001; 63: 223 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Kamil K Jirl B Jirl C Jirl K . Synthesis of a new reactivator of tabun-inhibited etylcholinesterase. Bioorg Med Chem Lett. 2003; 13: 3545 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ghadimi S Mousavi S Javani Z . Structure-activity study of phosphoramido acid esters as acetylcholinesterasf inhibitors. J Enzym Inhib Med Chem. 2008; 23: 213 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Hansch C Deutsch E . The use of substitution constants in the study of structure-activity relationships in cholinesterase inhibitors. Biochim Biophys Acta. 1966; 126: 117 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Hosa N Radic Z Tsigeling I Berman H Quinn D Taylor P . Aspartate74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphates. Biochem J. 1996; 35: 995.

    • Search Google Scholar
    • Export Citation
  • 6.

    Singh AK . Quantitative structure-activity relationships for phosphoramidothioate toxicity in housefly. Comp Biochem Phys A. 1999; 123: 24155.

    • Search Google Scholar
    • Export Citation
  • 7.

    Basak S Magnuson V Niemi G Regal R Veith G . Topological indices: their nature, mutual relatedness, and applications. Math Model. 1986; 8: 300 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hosseini SG Pourmortazavi SM Hajimirsadeghi SS . Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate. Combust Flame. 2005; 141: 322 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Pourmortazavi SM Hajimirsadeghi SS Kohsari I Fathollahi M Hosseini SG . Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel. 2008; 87: 244 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Pourmortazavi SM Hosseini SG Hajimirsadeghi SS Fareghi Alamdari R . Investigation on thermal analysis of binary zirconium/oxidant pyrotechnic systems. Combust Sci Tech. 2008; 180: 2093 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Pourmortazavi SM Hajimirsadeghi SS Hosseini SG . Characterization of the aluminum/potassium chlorate mixtures by simultaneous thermogravimetry—differential thermal analysis. J Therm Anal Calorim. 2006; 84: 557 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Hajimirsadeghi SS Teimouri MB Rahimi-Nasrabadi M Dehghanpour S . Non-isothermal kinetic study of the thermal decomposition of N-&bis&benzyl(methyl)amino&phosphoryl&-2,2-dichloroacetamide and N-&bis&dibenzylamino&phosphoryl&-2,2-dichloroacetamide. J Therm Anal Cal. 2009. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Senneca O Scherillo F Nunziata A . Thermal degradation of pesticides under oxidative conditions. J Anal Appl Pyrolysis. 2007; 80: 61 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Andreozzi R Ialongo G Marotta R Sanchirico R . Thermal decomposition of ethyl parathion. J Loss Prevent Proc. 1999; 12: 315 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Fathollahi M Pourmortazavi SM Hosseini SG . Particle size effects on thermal decomposition of energetic material. J Energ Mater. 2008; 26: 52 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bohn MA . Kinetic modeling of the concentrations of the stabilizer DPA and some of its consecutive products as function of time and temperature. J Therm Anal Calorim. 2001; 65: 103 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kohsari I Pourmortazavi SM Hajimirsadeghi SS . Non-isothermal kinetic study of the thermal decomposition of diaminoglyoxime and diaminofurazan. J Therm Anal Calorim. 2007; 89: 543 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Eslami A Hosseini SG Pourmortazavi SM . Thermoanalytical investigation on some boron-fuelled binary pyrotechnic systems. Fuel. 2008; 87: 3339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Edmundson RS . Dictionary of organophosphorus compounds, Published by CRC Press, 1988, ISBN 0412257904, 9780412257902.

  • 20.

    Kissinger HE . Reaction kinetics in differential thermal analysis. Anal Chem. 1957; 29: 1702 .

  • 21.

    Ozawa T . A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965; 38: 1881 .

  • 22.

    Hatakeyama T Quinn FX . Thermal analysis: fundamentals and applications to polymer science. New York: Wiley; 1994.

  • 23.

    Rong L Binke N Yuan W Zhengquan Y Rongzu H . Estimation of the critical temprature of thermal explosion for the highly nitrated nitrocellulose using non-isothermal DSC. J Therm Anal Calorim. 1999; 58: 369 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Pineda EAG Ferrarezi ADM Ferrarezi JG Hechenleitner AAW . Thermal decomposition of enalapril maleate studied by dynamic isoconversional method. J Therm Anal Calorim. 2005; 79: 259 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    ASTM E 698, Test methods for Arrhenius kinetic constants for thermally unstable materials.

  • 26.

    Pourmortazavi SM Kohsari I Teimouri MB Hajimirsadeghi SS . Thermal behaviour kinetic study of the dihydroglyoxime and dichloroglyoxime. Mater Lett. 2007; 61: 4670 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Criado JM Perez-Maqueda LA Sanchez-Jimenez PE . Dependence of the preexponential factor on temperature. J Therm Anal Calorim. 2005; 82: 671 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Pourmortazavi SM Hosseini SG Rahimi-Nasrabadi M Hajimirsadeghi SS Momenian H . Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009; 162: 1141 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Krabbendam-LaHaye ELM de Klerk WPC Krämer RE . The kinetic behaviour and thermal stability of commercially available explosives. J Therm Anal Calorim. 2005; 80: 495 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 22 0 0
Aug 2024 33 0 0
Sep 2024 54 1 0
Oct 2024 161 0 0
Nov 2024 33 0 0
Dec 2024 33 0 0
Jan 2025 7 0 0