View More View Less
  • 1 UNESP DFQB, Faculdade de Ciências e Tecnologia 19060-900 Presidente Prudente SP Brazil
  • | 2 Cellular Materials Group (CellMat), University of Valladolid Science Faculty, Condensed Matter Physics Department 47011 Valladolid Spain
  • | 3 Unidad Asociada Instituto Estructura de la Materia (CSIC) Madrid Spain
Restricted access

Abstract

Films of poly(vinylidene fluoride), PVDF, and poly(vinylidene fluoride – trifluoroethylene), P(VDF-TrFE), containing corn starch and latex of natural rubber as additives were produced by compressing/annealing forming blends visioning applications as biomaterials. Therefore, considering the possible applications of these blends, a basic characterization has been carried out targeting to infer on their thermomechanical properties. The polymer films (PVDF and P(VDF-TrFE)) with different percentage of additives were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), differential scanning calorimetry (DSC), and dynamical-mechanical analysis (DMA). The compressing/annealing process allowed discarding the necessity of using the solvents to dissolve either PVDF or P(VDF-TrFE), which are usually toxic to human. The results showed that the polymers do not interact chemically with the additives with the blends showing high thermal stability and elasticity modulus at the same order of magnitude of the bone, for instance. The SEM imaged revealed that the blends present morphological structures of typical physical mixtures where each material can be identified within the blends.

  • 1.

    Wang Y Wang J Wang F Li S Xiao J . PVDF based all-organic composite with high dielectric constant. Polym Bull. 2008; 60: 64755 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ciesinska W Zielinski J Brzozowska T . Thermal treatment of pitch-polymer blends. J Therm Anal Calorim. 2009; 95: 1936 .

  • 3.

    Molenda M Dziembaj R Piwowarska Z Drozdek M . A new method of coating powdered supports with conductive carbon films. J Therm Anal Calorim. 2007; 88: 5036 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Chinaglia DL Schmidt TF Santos LF Balogh DT Oliveira ON Jr Faria RM . Fabrication of novel light-emitting devices based on green-phosphor/conductive-polymer composites. Philos Mag Lett. 2007; 87: 4038 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Ito A Tanaka K Kawaji H Atake T Ando N Hato Y . Magnetic phase transition of Li0.75CoO2 compared with LiCoO2 and Li0.5CoO2. J Therm Anal Calorim. 2008;92: 399401 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Nalwa HS . Ferroelectric polymers: chemistry, physics and applications. New York: Marcel Dekker; 1995.

  • 7.

    Gregorio R Jr Cestari M . Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene Fluoride). J Polym Sci. 1994; 32: 85970.

    • Search Google Scholar
    • Export Citation
  • 8.

    Tabary N Lepretre S Boschin F Blanchemain N Neut C Delcourt-Debruyne E , et al. Functionalization of PVDF membranes with carbohydrate derivates for the controlled delivery of chlorhexidin. Biomol Eng. 2007; 24: 4726 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gallego-Perez D Ferrell N Hansford DJ . Fabrication of piezoelectric Polyvinylidene Fluoride (PVDF) microstructures by soft lithography for tissue engineering and cell biology applications. In: MRS Spring Meeting San Francisco, California. 2007. http://www.mrs.org/s&mrs/sec&subscribe.asp?CID=8775&DID=201955&action=detail Accessed 12 June 2009.

    • Search Google Scholar
    • Export Citation
  • 10.

    Callegari B Belangero WD . An´lise da interface formada entre o polifluoreto de vinilideno (piezelétrico e não piezelétrico) e o tecido ósseo de ratos. Acta Ortopedica Brasileira. 2004; 12: 1606.

    • Search Google Scholar
    • Export Citation
  • 11.

    Laroche G Marois Y Guidoin R King MW Martin L How T , et al. Polyvinylidene fluoride (PVDF) as a biomaterial: from polymeric raw material to monofilament vascular suture. J Biomed Mater Res. 1995; 29: 152536 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Valentini RF Vargo TG Gardella JA Aebischer P . Electrically charged polymeric substrates enhance nerve fibre outgrowth In vitro. Biomaterials. 1992; 13: 18390 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Aoshima R Kanda Y Takada A Yamashita A . Sulfonated poly(vinylidene fluoride) as a biomaterial—immobilization of urokinase and biocompatibility. J Biomed Mater Res. 1982; 16: 28999 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Fernandez MV Suzuki A Chiba A . Study of annealing effects on the structure of vinylidene fluoride-trifluoroethylene copolymers using WAXS and SAXS. Macromoleculares. 1987; 20: 180611 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Matsumoto A Horie S Yamada H Matsushige K Kuwajima S Ishida K . Ferro- and piezoelectric properties of vinylidene fluoride oligomer thin film fabricated on flexible polymer film. Appl Phys Lett. 2007; 90: 2906.

    • Search Google Scholar
    • Export Citation
  • 16.

    Ploss B Ploss B . Dielectric nonlinearity of PVDF-TrFE copolymer. Polymer. 2000; 41: 608793 .

  • 17.

    Gimenes R Zaghete MA Bertolini MJ Varela JA Coelho LO Silva NF . Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration (Proceedings Paper). Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD) 2004; 5385: 53947.

    • Search Google Scholar
    • Export Citation
  • 18.

    Beloti MM de Oliveira PT Gimenes R Zaghete MA Bertolini MJ Rosa AL . In vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate. J Biomed Mater Res Part A. 2006; 79A:2828 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Agostini DLS Constantino CJL Job AE . Thermal degradation of both latex and latex cast film forming membranes combined TG/FTIR investigation. J Therm Anal Calorim. 2008; 91: 7037 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    de Oliveira LCS de Arruda EJ Favaro SP da Costa RB Gonçalves PS Job AE . Evaluation of thermal behavior of latex membranes from genetically improved rubber tree (Hevea brasiliensis). Thermochim Acta. 2006; 445: 2731 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Brandão ML Coutinho Netto J Thomazini JA Lachat JJ Muglia VF Piccinato CE . Prótese vascular derivada do l´tex. Braz Vasc J. 2007; 6: 13041.

    • Search Google Scholar
    • Export Citation
  • 22.

    Neves-Junior WFP Ferreira M Alves MCO Graeff CFO Mulato M Coutinho-Netto J , et al. Influence of fabrication process on the final properties of natural-rubber latex tubes for vascular prosthesis. Braz J Phys. 2006; 36: 58691 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Balabanian CACA Coutinho-Netto J Lamano-Carvalho TL Lacerda SA Brentegani LG . Biocompatibility of natural latex implanted into dental alveolus of ratos. J Oral Sci. 2006; 48: 2015 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Lacerda LG da Carvalho Silva Filho MA Demiate IM Bannach G Ionashiro M , et al. Thermal behaviour of corn starch granules under action of fungal &-amylase. J Therm Anal Calorim. 2008; 93: 4459 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Gomes ME Sikavitsas VI Behravesh E Reis RL Mikos AG . Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res Part A. 2003; 67: 8795 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Alves CM Yang Y Carnes DL Ong JL Sylvia VL Dean DD , et al. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials. 2007; 28: 30715 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Mano JF Reis RL . Viscoelastic monitoring of starch-based biomaterials in simulated physiological conditions. Mater Sci Eng A. 2004; 370: 3215 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Simoes RD Job AE Chinaglia DL Zucolotto V Camargo-Filho JC Alves N , et al. Structural characterization of blends containing both PVDF and natural rubber latex. J Raman Spectrosc. 2005; 36: 111824 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kobayashi M Tashiro K Tadokoro H . Molecular vibrations of three cristal forms of Poly(vinylidene Fluoride). Macromolecules. 1975; 8: 15871 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Prabu AA Lee JS Kim KJ Lee HS . Infrared spectroscopic studies on crystallization and Curie transition behavior of ultrathin films of P(VDF/TrFE) (72/28). Vib Spectrosc. 2006; 41: 113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Piza MA Constantino CJL Venâncio EC Mattoso LHC . Interaction mechanism of poly (o-ethoxyaniline) and collagen blends. Polymer. 2003; 44: 566370 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Sencadas V Lanceros-Méndez S Mano JF . Thermal characterization of a vinylidene fluoride-trifluorethylene (75-25) (&mol) copolymer film. J Non-Cryst Solids. 2006;352: 537681 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Botelho G Lanceros-Mendez S Goncalves AM Sencadas V Rocha JG . Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the b-phase. J Non-Cryst Solids. 2008; 354: 728 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Campos JSC Ribeiro AA Cardoso CX . Preparation and characterization of PVDF/CaCO3 composites. Mater Sci Eng B. 2007;136: 1238 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Basset CAL . Biochem Physiol Bone. New York: Academic Press; 1971.

  • 36.

    Linares A Costa JL . Tensile and dynamic mechanical behaviour of polymer blends based on PVDF. Eur Polym J. 1997; 33: 46773 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Hatakeyama T Liu Z , editors. Handbook of thermal analysis. New York: Wiley; 2000. p. 209.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 3 2 1
May 2021 10 2 1
Jun 2021 4 0 0
Jul 2021 2 0 0
Aug 2021 5 0 0
Sep 2021 6 0 0
Oct 2021 0 0 0