Carboxymethylation of wheat starch and &-cyclodextrin followed by ultrasonic treatment of carboxymethyl wheat starch afforded starch derivatives differing in molecular size. Their degree of substitution was estimated to be 0.6. Starch materials were further sulfated to give hybrid derivatives with carboxymethyl and sulfate groups. A series of wheat starch and &-cyclodextrin derivatives were characterized by FT-IR spectroscopy and thermogravimetric analysis. Thermal analysis of starch and their derivatives revealed information concerning their thermal stability and decomposition. It has been found that carboxymethylation and sulfation decrease the thermal stability of starch materials. Similarly, their hybrid carboxymethyl-sulfate derivatives showed the same effect. Further, it has been found that the thermal stability of cyclic molecules was higher in comparison with linear ones.
Perkins AT Mitchell HL . Differential thermal analysis of organic compounds. Trans Kansas Acad Sci. 1957; 60: 437 .
Morita H . Differential thermal analysis of some polyglucosans. Anal Chem. 1957; 29: 1095–7 .
Varma MCP . Differential thermal analysis of organic solids. J Appl Chem (London). 1958; 8: 117–21.
Aggarwal P Dollimore D . A comparative study of the degradation of different starches using thermal analysis. Talanta. 1996; 43: 1527–30 .
Elliott C Ye Z Mojumdar SC Saleh MT . A potential bacterial carrier for bioremediation. Characterization of insoluble potato fiber. J Therm Anal Cal. 2007; 90(3): 707–11 .
Belopolskaya TV Tsereteli GI Grunina NA Smirnova OI . Calorimetric study of the native and postdenatured structures in starches with different degree of hydration. J Therm Anal Cal. 2008; 92(3): 677–82 .
Tsereteli GI Belopolskaya TV Grunina NA . Dehydrated native biopolymers–a unique representative of glassy system. J Therm Anal Cal. 2008; 92(3): 711–6 .
Tomasik P Palaasinki M Wiejak S . The thermal decomposition of carbohydrates. Part II. The decomposition of starch. Adv Carbohydr Chem Biochem. 1989; 47: 279–87 .
Thiebaud S Aburto J Alric I Borredon E Bikaris D Prinos J , et al. Properties of fatty-acid esters of starch and their blends with LDPE. J Appl Polym Sci. 1997; 65: 705–21 .
Aburto J Alric I Thiebaud S Borredon E Bikaris D Prinos J , et al. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J Appl Polym Sci. 1999; 74: 1440–51 .
Aggarwal P Dollimore D . The effect of chemical modification on starch studied using thermal analysis. Thermochim Acta. 1998; 324: 1–8 .
Šimkovic I Jakab E . Thermogravimetry/mass spectrometry study of weakly basic starch-based ion exchanger. Carbohydr Polym. 2001; 45: 53–9 .
Zhang X Golding J Burgar I . Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy. Polymer. 2002; 43: 5791–6 .
Teramoto N Motoyama T Yosomiya R Shibata M . Synthesis, thermal properties, and biodegradability of propyl-etherified starch. Eur Polym J. 2003; 39: 255–61 .
Fang JM Fowler PA Tomkinson J Hill CAS . The preparation and characterization of a series of chemically modified potato starches. Carbohydr Polym. 2002; 47: 245–52 .
Heinze T Talaba P Heinze U . Starch derivatives of high degree of functionalization. 1. Effective, homogeneous synthesis of p-toluenesulfonyl (tosyl) starch with a new functionalization pattern. Carbohydr Polym. 2000; 42: 411–20 .
Schöniger K . Die mikroanalytische Schnellbestimmung von Halogenen und Schwefel in organischen Verbindungen. Mikrochim Acta. 1956; 122: 869–76.
Bhattacharyya D Singhal RS Kulkarni PR . Physicochemical properties of carboxymethyl starch prepared from corn and waxy amaranth starch. Carbohydr Polym. 1995; 27: 167–9 .
Rinaudo M Hudry-Clergeon G . Etude des O-carboxyméthylcelluloses à degré de substitution variable. I: Préparation et caractérisation des produits. J Chim Phys. 1967; 64: 1746–52.
Mähner C Lechmer MD Nordmeier E . And characterisation of dextran and pullulan sulphate. Carbohydr Res. 2001; 331: 208 .
Dubois M Gilles KA Hamilton KJ Rebers PA Smith E . Colorimetric method for determination of sugars and related substances. Anal Biochem. 1959; 28: 350–6.
Günzler H Gremlich HU . IR spectroscopy. Weinheim: Wiley-VCH; 2002.
Ma X Chang PR Yu J . Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr Polym. 2008; 72: 369–75 .
Rudnik E Matuschek G Milanov N Kettrup A . Thermal properties of starch succinates. Termochim Acta. 2005; 427: 163–6 .