Authors:
P. Capek Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences Dúbravská Cesta 9 845 38 Bratislava Slovakia

Search for other papers by P. Capek in
Current site
Google Scholar
PubMed
Close
,
M. Drábik Institute of Inorganic Chemistry, Slovak Academy of Sciences Dúbravská Cesta 9 845 36 Bratislava Slovakia

Search for other papers by M. Drábik in
Current site
Google Scholar
PubMed
Close
, and
J. Turjan Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences Dúbravská Cesta 9 845 38 Bratislava Slovakia

Search for other papers by J. Turjan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Carboxymethylation of wheat starch and &-cyclodextrin followed by ultrasonic treatment of carboxymethyl wheat starch afforded starch derivatives differing in molecular size. Their degree of substitution was estimated to be 0.6. Starch materials were further sulfated to give hybrid derivatives with carboxymethyl and sulfate groups. A series of wheat starch and &-cyclodextrin derivatives were characterized by FT-IR spectroscopy and thermogravimetric analysis. Thermal analysis of starch and their derivatives revealed information concerning their thermal stability and decomposition. It has been found that carboxymethylation and sulfation decrease the thermal stability of starch materials. Similarly, their hybrid carboxymethyl-sulfate derivatives showed the same effect. Further, it has been found that the thermal stability of cyclic molecules was higher in comparison with linear ones.

  • 1.

    Perkins AT Mitchell HL . Differential thermal analysis of organic compounds. Trans Kansas Acad Sci. 1957; 60: 437 .

  • 2.

    Morita H . Differential thermal analysis of some polyglucosans. Anal Chem. 1957; 29: 10957 .

  • 3.

    Varma MCP . Differential thermal analysis of organic solids. J Appl Chem (London). 1958; 8: 11721.

  • 4.

    Aggarwal P Dollimore D . A comparative study of the degradation of different starches using thermal analysis. Talanta. 1996; 43: 152730 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Elliott C Ye Z Mojumdar SC Saleh MT . A potential bacterial carrier for bioremediation. Characterization of insoluble potato fiber. J Therm Anal Cal. 2007; 90(3): 70711 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Belopolskaya TV Tsereteli GI Grunina NA Smirnova OI . Calorimetric study of the native and postdenatured structures in starches with different degree of hydration. J Therm Anal Cal. 2008; 92(3): 67782 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Tsereteli GI Belopolskaya TV Grunina NA . Dehydrated native biopolymers–a unique representative of glassy system. J Therm Anal Cal. 2008; 92(3): 7116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Tomasik P Palaasinki M Wiejak S . The thermal decomposition of carbohydrates. Part II. The decomposition of starch. Adv Carbohydr Chem Biochem. 1989; 47: 27987 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Thiebaud S Aburto J Alric I Borredon E Bikaris D Prinos J , et al. Properties of fatty-acid esters of starch and their blends with LDPE. J Appl Polym Sci. 1997; 65: 70521 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Aburto J Alric I Thiebaud S Borredon E Bikaris D Prinos J , et al. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J Appl Polym Sci. 1999; 74: 144051 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Aggarwal P Dollimore D . The effect of chemical modification on starch studied using thermal analysis. Thermochim Acta. 1998; 324: 18 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Šimkovic I Jakab E . Thermogravimetry/mass spectrometry study of weakly basic starch-based ion exchanger. Carbohydr Polym. 2001; 45: 539 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Zhang X Golding J Burgar I . Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy. Polymer. 2002; 43: 57916 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Teramoto N Motoyama T Yosomiya R Shibata M . Synthesis, thermal properties, and biodegradability of propyl-etherified starch. Eur Polym J. 2003; 39: 25561 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Fang JM Fowler PA Tomkinson J Hill CAS . The preparation and characterization of a series of chemically modified potato starches. Carbohydr Polym. 2002; 47: 24552 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Heinze T Talaba P Heinze U . Starch derivatives of high degree of functionalization. 1. Effective, homogeneous synthesis of p-toluenesulfonyl (tosyl) starch with a new functionalization pattern. Carbohydr Polym. 2000; 42: 41120 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Schöniger K . Die mikroanalytische Schnellbestimmung von Halogenen und Schwefel in organischen Verbindungen. Mikrochim Acta. 1956; 122: 86976.

    • Search Google Scholar
    • Export Citation
  • 18.

    Bhattacharyya D Singhal RS Kulkarni PR . Physicochemical properties of carboxymethyl starch prepared from corn and waxy amaranth starch. Carbohydr Polym. 1995; 27: 1679 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Rinaudo M Hudry-Clergeon G . Etude des O-carboxyméthylcelluloses à degré de substitution variable. I: Préparation et caractérisation des produits. J Chim Phys. 1967; 64: 174652.

    • Search Google Scholar
    • Export Citation
  • 20.

    Mähner C Lechmer MD Nordmeier E . And characterisation of dextran and pullulan sulphate. Carbohydr Res. 2001; 331: 208 .

  • 21.

    Dubois M Gilles KA Hamilton KJ Rebers PA Smith E . Colorimetric method for determination of sugars and related substances. Anal Biochem. 1959; 28: 3506.

    • Search Google Scholar
    • Export Citation
  • 22.

    Günzler H Gremlich HU . IR spectroscopy. Weinheim: Wiley-VCH; 2002.

  • 23.

    Ma X Chang PR Yu J . Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr Polym. 2008; 72: 36975 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Rudnik E Matuschek G Milanov N Kettrup A . Thermal properties of starch succinates. Termochim Acta. 2005; 427: 1636 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 14 0 0
Aug 2024 38 2 2
Sep 2024 49 1 0
Oct 2024 209 1 1
Nov 2024 95 1 0
Dec 2024 29 0 0
Jan 2025 12 0 0