Authors:
A. Awal University of Toronto Center for Biocomposites and Biomaterials Processing, Faculty of Forestry 33 Willcocks St Toronto ON M5S 3B3 Canada

Search for other papers by A. Awal in
Current site
Google Scholar
PubMed
Close
,
S. Ghosh University of Toronto Center for Biocomposites and Biomaterials Processing, Faculty of Forestry 33 Willcocks St Toronto ON M5S 3B3 Canada

Search for other papers by S. Ghosh in
Current site
Google Scholar
PubMed
Close
, and
M. Sain University of Toronto Center for Biocomposites and Biomaterials Processing, Faculty of Forestry 33 Willcocks St Toronto ON M5S 3B3 Canada

Search for other papers by M. Sain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Bio-composite fibers were developed from wood pulp and polypropylene (PP) by an extrusion process. The thermo-physical and mechanical properties of wood pulp-PP composite fibers, neat PP and wood pulp were studied using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The thermal stability of bio-composite fibers was found to be significantly higher than pure wood pulp. An understanding into the melting behaviour of the composite system was obtained which would assist in selecting a suitable temperature profile for the extruder during processing. The visco-elastic properties of bio-composite fibers were also revealed from the study. The generated bio-composite fibers were also characterized using Fourier transform infrared spectroscopy (FTIR) to understand the nature of chemical interaction between wood pulp reinforcement and PP matrix. The use of maleated polypropylene (MAPP) as a compatibilizer was investigated in relation to the fiber microstructure. Changes in absorption peaks were observed in FTIR spectra of bio-composite fibers as compared to the pure wood pulp which indicated possible chemical linkages between the fiber and polymer matrix.

  • 1.

    Sain M . Interface modification and mechanical properties of natural fiber-polyolefin composite products. J Reinf Plast Compos. 2005; 24: 12130 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Wang B Sain M . Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol. 2007; 67: 25217 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Oksman K Skrifvars M Selin JF . Natural fibers as reinforced in polylactic acid (PLA). Compos Sci Technol. 2003; 63: 131724 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Saheb D Jog JP . Natural fiber polymer composites: a review. Adv Polym Sci. 1999; 18: 35163 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Hornsby PR Hinrichen E Tarverdi K . Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers: part II analysis of composite microstructure and mechanical properties. J Mater Sci. 1997; 32: 100915 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Heijenrath R Peijs T . Natural fibre-mat-reinforced thermoplastic composites based on flax fibres and poplypropylene. Adv Compos Lett. 1996; 5: 815.

    • Search Google Scholar
    • Export Citation
  • 7.

    Mieck KP Nechwatal A Knobedorf C . Potential applications of natural fibres in composite materials. Melli Text. 1994; 11: 22830 (in English).

    • Search Google Scholar
    • Export Citation
  • 8.

    D´ny´di L Renner K Szabó Z Nagy G Móczó J Puk´nszky B . Wood flour filled pp composites: adhesion, deformation, failure. Polym Adv Technol. 2006; 17: 96774 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Nachtigall S Cerveira G Rosa S . New polymeric-coupling agent for polypropylene/wood-flour composites. Polym Test. 2007; 26: 61928 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Dominkovics Z D´ny´di L Punk´nszky B . Surface modification of wood flour and its effect on the properties of pp/wood composites. Composites A. 2007; 38: 1893901 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wambua P Ivens J Verpoest I . Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol. 2003; 63: 125964 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Herrera-Franco PJ Valadez-Gonzalez A . Mechanical properties of continuous natural-reinforced polymer composites. Composites A. 2004; 35: 33945 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bouza R Marco C Ellis G Martin Z Gómez MA Barral L . Analysis of the isothermal crystallization of polypropylene/wood flour composites. J Therm Anal Calorim. 2008; 94: 11927 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Li Y Mai YW Ye L . Sisal fibre and its composites: a review of recent developments. Compos Sci Technol. 2000; 60: 203755 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hepwoth DG Hobson RN Bruce DM Farrent JW . The use of unretted hemp fibre in composite manufacture. Composites. 2000; A3: 127983.

  • 16.

    Rozman HD Tan KW Kumar RN Abubakar A Ishak ZAM Ismail H . The effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene composites. Eur Polym J. 2000; 36: 148394 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Douglas P Murphy WR McNally G Billham M . ANTEC. 2003; 202933.

  • 18.

    Li TQ Ng CN Li RKY . Impact behavior of sawdust/recycled PP composites. J Appl Polym Sci. 2001; 81: 14208 .

  • 19.

    Arbelaiz A Fern´ndez B Cantero G Liano-Ponto R Valea A Mondragon I . Mechanical properties of flax fibre/polypropylene composites: influence of fibre/matrix modification and glass fibre hybridization. Composites A. 2005; 36: 163744 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Jain S Kumar R Jindal UC . Mechanical behaviour of bamboo and composite. J Mater Sci. 1992; 27: 4598604 .

  • 21.

    Aziz SH Ansell MP . The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1 - polyester resin matrix. Compos Sci Technol. 2004; 64: 121930 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Glassar WG Razaina R Jain RK Kander R . Fibre-reinforced cellulosic thermoplastic composites. J Appl Polym Sci. 1999; 73: 132940 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Bledzki AK Gassan J . Composite reinforced with cellulose based fibres. Prog Polym Sci. 1999; 24: 22174 .

  • 24.

    Causin V Marega C Saini R Marigo A Ferrara G . Crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2007; 90: 84957 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Moore EP . Polypropylene handbook. Hanser: Cincinnati; 1996.

  • 26.

    Amash A Zugenmaier P . Study on cellulose and xylan filled polypropylene composites. Poly Bull. 1998; 40: 2518 .

  • 27.

    Mojumdar SC Sain M Prasad RC Sun L Venart JES . Selected thermoanalytical methods and their applications from medicine to construction. J Therm Anal Calorim. 2007; 90: 65362 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Ehrenstein GW Riedel G Trawiel P . Thermal analysis of plastics. Hanser: Cincinnati; 2004.

  • 29.

    Dean JA . The analytical chemistry handbook. New York: McGraw Hill Inc.; 1995. p. 15.15.

  • 30.

    Pungor E . A practical guide to instrument analysis. Florida: Boca Raton; 1995. p. 18191.

  • 31.

    Douglas S Hollar FJ Nieman T . Principles of instrumental analysis. 5th ed. McGraw-Hill: New York; 1998. p. 905.

  • 32.

    Chew S Sim A . In: 5th IPFA 95, Singapore; 1995. pp. 1818.

  • 33.

    Harper D Wolcott M . Interaction between coupling agent and lubricants in wood-polypropylene composites. Composites A. 2004; 35: 38594 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Wang Z Hsiao BS Srinivas S Brown GM Tsou AH Cheng SZ , et al. Phase transformation in quenched mesomorphic isotactic polypropylene. Polymer. 2001; 42: 75616 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Qiu W Zhang F Endo T Hirotsu T . Effect of maleated poplypropylene on the performance of polypropylene/cellulose composite. Polym Compos. 2005; 26: 44853 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Proniewicz LM Paluszkiewicz C Bircz&ska AW Majcherezyk H Bara&ski A Konieczna A . FT-IR and FT-Raman study of hydrothermally degradated cellulose. J Mol Struct. 2001; 596: 1639 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Mwaikambo LY Ansell MP . Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci. 2002; 84: 222234 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Luo X Benson RS Kit KM Dever M . Kudzu fiber-reinforcement polymer composites. J Appl Polym Sci. 2002; 85: 19619 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 45 0 0
Aug 2024 59 0 0
Sep 2024 59 0 0
Oct 2024 189 0 0
Nov 2024 102 0 0
Dec 2024 55 1 2
Jan 2025 19 0 0