Low-temperature heat capacity of natural zinnwaldite was measured at temperatures from 6 to 303 K in a vacuum adiabatic calorimeter. An anomalous behavior of heat capacity function Cp(T) has been revealed at very low temperatures, where this function does not tend to zero. Thermodynamic functions of zinnwaldite have been calculated from the experimental data. At 298.15 K, heat capacity Cp(T) = 339.8 J K−1mol−1, calorimetric entropy So(&) – So(6.08) = 329.1 J K−1 mol−1, and enthalpy &o(&) − &o(6.08) = 54,000 J mol−1. Heat capacity and thermodynamic functions at 298.15 K for zinnwaldite having theoretical composition were estimated using additive method of calculation.
Paukov IE Kovalevskaya YuA Kiseleva IA Shuriga TN . Heat capacity and thermodynamic properties of natural annite at low temperatures. Geochem Int. 2006; 44: 841–5 .
Paukov IE Kovalevskaya YuA Kiseleva IA Shuriga TN . Low-temperature thermodynamic properties of natural biotite. Geochem Int. 2007; 45: 405–8 .
Paukov IE Kovalevskaya YuA Kiseleva IA Shuriga TN . Thermodynamic properties of natural lepidolite. Geochem Int. 2007; 45: 501–5 .
Paukov IE Kovalevskaya YuA Kiseleva IA Shuriga TN Ikorskii VN . Low-temperature heat capacity and thermodynamic parameters of natural polylithionite. Geochem Int. 2007; 45: 926–30 .
Turkin AI Drebushchak VA Kovalevskaya YuA Paukov IE . Low-temperature heat capacity of magnesioferrite, MgFe2O4. J Therm Anal Calorim. 2008;92: 717–21 .
Drebushchak VA Kovalevskaya YuA Paukov IE Surkov NV . Low-temperature heat capacity of monoclinic enstatite. J Therm Anal Calorim. 2008; 94: 493–7 .
Rieder M Cavazzini G D’akonov YuS Frank-Kamenetsky VA Gottardy G Guggengeim S , et al. Nomenclature of the micas. Mineral Mag. 1999; 63(2): 267–79.
Chukhrov FV , editor. Minerals. Moscow: Nauka; 1992. (in Russian).
Paukov IE Kovalevskaya YuA Rahmoun NS Geiger CA . A low-temperature heat capacity study of synthetic anhydrous Mg-cordierite (Mg2Al4Si2O18). Am Mineral. 2006;91: 35–8 .
Robie RA Hemingway BS . Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Am Mineral. 1982;67: 470–83.
Schelleng JH Raquet CA Friedberg SA . Heat Capacity of Mn(CH3COO)2·4H2O between 0.4 and 20 K. Phys Rev. 1968;176: 708–12 .
Kireev VA . Methods of practical calculations in thermodynamics of chemical reactions (in Russian), vol. 9. Moscow: Nauka; 1970. p. 6–100.
Glushko VP Gurvich LV Bergman GA Veitz IV Medvedev VA Khachkuruzov GA , et al., editors. Thermodynamic properties of individual substances (in Russian). Moscow: Nauka; 1982.