Authors:
I. Paukov Institute of Inorganic Chemistry SB RAS pr. Ac. Lavrentieva 3 630090 Novosibirsk Russia

Search for other papers by I. Paukov in
Current site
Google Scholar
PubMed
Close
,
Yulia Kovalevskaya Institute of Inorganic Chemistry SB RAS pr. Ac. Lavrentieva 3 630090 Novosibirsk Russia

Search for other papers by Yulia Kovalevskaya in
Current site
Google Scholar
PubMed
Close
,
Irina Kiseleva M.V. Lomonosov Moscow State University, Leninskie Gory Geological Department 119991 Moscow Russia

Search for other papers by Irina Kiseleva in
Current site
Google Scholar
PubMed
Close
, and
Tatiana Shuriga All-Russian Institute of Mineral Resources 31, Staromonetny per 119017 Moscow Russia

Search for other papers by Tatiana Shuriga in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Low-temperature heat capacity of natural zinnwaldite was measured at temperatures from 6 to 303 K in a vacuum adiabatic calorimeter. An anomalous behavior of heat capacity function Cp(T) has been revealed at very low temperatures, where this function does not tend to zero. Thermodynamic functions of zinnwaldite have been calculated from the experimental data. At 298.15 K, heat capacity Cp(T) = 339.8 J K−1mol−1, calorimetric entropy So(&) – So(6.08) = 329.1 J K−1 mol−1, and enthalpy &o(&) − &o(6.08) = 54,000 J mol−1. Heat capacity and thermodynamic functions at 298.15 K for zinnwaldite having theoretical composition were estimated using additive method of calculation.

  • 1.

    Paukov IE Kovalevskaya YuA Kiseleva IA Shuriga TN . Heat capacity and thermodynamic properties of natural annite at low temperatures. Geochem Int. 2006; 44: 8415 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Paukov IE Kovalevskaya YuA Kiseleva IA Shuriga TN . Low-temperature thermodynamic properties of natural biotite. Geochem Int. 2007; 45: 4058 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Paukov IE Kovalevskaya YuA Kiseleva IA Shuriga TN . Thermodynamic properties of natural lepidolite. Geochem Int. 2007; 45: 5015 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Paukov IE Kovalevskaya YuA Kiseleva IA Shuriga TN Ikorskii VN . Low-temperature heat capacity and thermodynamic parameters of natural polylithionite. Geochem Int. 2007; 45: 92630 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Turkin AI Drebushchak VA Kovalevskaya YuA Paukov IE . Low-temperature heat capacity of magnesioferrite, MgFe2O4. J Therm Anal Calorim. 2008;92: 71721 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Drebushchak VA Kovalevskaya YuA Paukov IE Surkov NV . Low-temperature heat capacity of monoclinic enstatite. J Therm Anal Calorim. 2008; 94: 4937 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Rieder M Cavazzini G D’akonov YuS Frank-Kamenetsky VA Gottardy G Guggengeim S , et al. Nomenclature of the micas. Mineral Mag. 1999; 63(2): 26779.

    • Search Google Scholar
    • Export Citation
  • 8.

    Chukhrov FV , editor. Minerals. Moscow: Nauka; 1992. (in Russian).

  • 9.

    Paukov IE Kovalevskaya YuA Rahmoun NS Geiger CA . A low-temperature heat capacity study of synthetic anhydrous Mg-cordierite (Mg2Al4Si2O18). Am Mineral. 2006;91: 358 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Robie RA Hemingway BS . Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Am Mineral. 1982;67: 47083.

    • Search Google Scholar
    • Export Citation
  • 11.

    Schelleng JH Raquet CA Friedberg SA . Heat Capacity of Mn(CH3COO)2·4H2O between 0.4 and 20 K. Phys Rev. 1968;176: 70812 .

  • 12.

    Kireev VA . Methods of practical calculations in thermodynamics of chemical reactions (in Russian), vol. 9. Moscow: Nauka; 1970. p. 6100.

    • Search Google Scholar
    • Export Citation
  • 13.

    Glushko VP Gurvich LV Bergman GA Veitz IV Medvedev VA Khachkuruzov GA , et al., editors. Thermodynamic properties of individual substances (in Russian). Moscow: Nauka; 1982.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 32 0 0
Jul 2024 12 0 0
Aug 2024 23 0 0
Sep 2024 25 0 0
Oct 2024 105 0 0
Nov 2024 77 0 0
Dec 2024 1 0 0