Author:
P. Schroth Institut C für Mathematik Technische Universität Braunschweig Federal Republic of Germany

Search for other papers by P. Schroth in
Current site
Google Scholar
PubMed
Close
Restricted access
The system of functional equations
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\forall p\varepsilon N_ + \forall (x,y)\varepsilon D:f(x,y) = \frac{1}{p}\sum\limits_{k = 0}^{p - 1} {f(x + ky,py)}$$ \end{document}
is suited to characterize the functions
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(x,y) \mapsto y^m B_m \left( {\frac{x}{y}} \right),m\varepsilon N,$$ \end{document}
Bm means them-th Bernoulli-polynomial,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(x,y) \mapsto \exp (x)y(\exp (y) - 1)^{ - 1}$$ \end{document}
(for these functionsD =R ×R+) and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(x,y) \mapsto \log y + \Psi \left( {\frac{x}{y}} \right)(D = R_ + \times R_ + )$$ \end{document}
as those continuous solutions of this system which allow a certain separation of variables and take on some prescribed function values.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 1 0 0
May 2024 2 0 0
Jun 2024 6 0 1
Jul 2024 1 0 0
Aug 2024 5 0 0
Sep 2024 5 0 0
Oct 2024 2 0 0