Author:
U. Stadtmüller Abteilung für Mathematik, I Universität Ulm Oberer Eselsberg D-7900 Ulm Federal Republic of Germany

Search for other papers by U. Stadtmüller in
Current site
PubMed
Close
Restricted access
Let a standard Wiener processW(.) be given on the real line. We investigate the asymptotic behaviour of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$X_h (x) = h^{ - 1} \smallint K((\upsilon - x)h^{ - 1} )W(\upsilon )d\upsilon - W(x),$$ \end{document}
ash → 0 +, that is the deviation of a kernel approximation ofW(.) from the process itself. For example, we confirm, under certain conditions onK, a conjecture of P. Révész proving that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\lim \sup }\limits_{h \to 0 + 0 \leqslant x \leqslant 1} \frac{{\left| {X_h (x)} \right|}}{{\sqrt {h \log h^{ - 1} } }} \underline{\underline {a.s.}} c,$$ \end{document}
with an explicit constantc = c(K).
• Collapse
• Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Springer Nature Switzerland AG
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Feb 2024 2 0 0
Mar 2024 0 0 0
Apr 2024 4 0 1
May 2024 3 0 0
Jun 2024 8 0 1
Jul 2024 16 0 0
Aug 2024 2 0 0

Author:

Authors: and

## Anonymous sealed bid auction protocol based on a variant of the dining cryptographers’ protocol

Authors: , , , and

## The size Ramsey number

Authors: , , , and

Author: