Authors:
K. S. Bagga Department of Mathematics Indiana Purdue University 46805 Fort Wayne IN USA

Search for other papers by K. S. Bagga in
Current site
Google Scholar
PubMed
Close
,
L. W. Beineke Department of Mathematics Indiana Purdue University 46805 Fort Wayne IN USA

Search for other papers by L. W. Beineke in
Current site
Google Scholar
PubMed
Close
,
G. Chartrand Department of Mathematics Western Michigan University 49008 Kalamazoo MI USA

Search for other papers by G. Chartrand in
Current site
Google Scholar
PubMed
Close
, and
O. R. Oellermann Department of Mathematics Western Michigan University 49008 Kalamazoo MI USA

Search for other papers by O. R. Oellermann in
Current site
Google Scholar
PubMed
Close
Restricted access
For an (r − 2)-edge-connected graphG (r ≥ 3) for orderp containing at mostk edge cut sets of cardinalityr − 2 and for an integerl with 0 ≤l ≤ ⌊p/2⌋, it is shown that (1) ifp is even, 0 ≤k ≤ r(l + 1) − 1, and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop \sum \limits_{v \in V(G)} |\deg _G v - r|< r(2 + 2l) - 2k$$ \end{document}
, then the edge independence numberβ1(G) is at least (p − 2l)/2, and (2) ifp is odd, The sharpness of these results is discussed.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 11 0 0
Jan 2024 17 0 0
Feb 2024 5 0 0
Mar 2024 2 0 0
Apr 2024 13 0 0
May 2024 8 0 0
Jun 2024 5 0 1