Author: G. Hendry 1
View More View Less
  • 1 Aberdeen University Department of Mathematics Edward Wright Building Dunbar Street Aberdeen Scotland Edward Wright Building Dunbar Street Aberdeen Scotland
Restricted access

Abstract  

A pathP in a graphG is said to beextendable if there exists a pathP’ inG with the same endvertices asP such thatV(P)⊆V (P’) and |V(P’)|=|V(P)|+1. A graphG ispath extendable if every nonhamiltonian path inG is extendable. We investigate the extent to which known sufficient conditions for a graph to be hamiltonian-connected imply the extendability of paths in the graph. Several theorems are proved: for example, it is shown that ifG is a graph of orderp in which the degree sum of each pair of non-adjacent vertices is at leastp+1 andP is a nonextendable path of orderk inG thenk≤(p+1)/2 and 〈V (P)〉≅Kk orKke. As corollaries of this we deduce that if δ(G)≥(p+2)/2 or if the degree sum of each pair of nonadjacent vertices inG is at least (3p−3)/2 thenG is path extendable, which strengthen results of Williamson [13].

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2021 0 0 0
Jan 2022 11 0 0
Feb 2022 0 0 0
Mar 2022 0 0 0
Apr 2022 0 0 0
May 2022 2 0 0
Jun 2022 0 0 0