We consider finite packings of unit-balls in Euclidean 3-spaceE3 where the centres of the balls are the lattice points of a lattice polyhedronP of a given latticeL3⊃E3. In particular we show that the facets ofP induced by densest sublattices ofL3 are not too close to the next parallel layers of centres of balls. We further show that the Dirichlet-Voronoi-cells are comparatively small in this direction. The paper was stimulated by the fact that real crystals in general grow slowly in the directions normal to these dense facets.