Z. Magyar Mathematical Institute Hungarian Academy of Sciences Reáltanoda u. Budapest Hungary

Search for other papers by Z. Magyar in
Current site
Google Scholar
Restricted access

LetG be a real reductive Lie group, i.e., a Lie group whose Lie algebra is the direct product of a commutative and a semi-simple algebra. LetG0 be the unit component ofG. We analyze the following question: if Φ is a continuous linear representation ofG over a finite dimensional complex vector spaceV then when can we find a scalar product onV so that the group Φ(G) become*-invariant with respect to it? In particular, ifG/G0 is finite then we show that this is the case if and only if the same holds for the connected subgroup corresponding to the center ζ of the Lie algebra ofG and the latter condition is very easy to describe in terms ofdΦ/ζ. We discuss some related questions such as the relation between Cartan decompositions ofG and polar decompositions of Φ(G), the description of the closure of Φ(G), etc.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
per Year
per Year
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 4 0 0
Feb 2024 1 0 0
Mar 2024 0 0 0
Apr 2024 3 0 0
May 2024 0 0 0
Jun 2024 1 0 1
Jul 2024 0 0 0