View More View Less
  • 1 Department of Mathematics Faculty of Science Cairo University Cairo Egypt
Restricted access
In this paper we prove the existence of solutions of the differential inclusions
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left\{ \begin{gathered} \dot X(t) \in - A_t (X(t)) + F(t,X(t)),,0 \leqslant t \leqslant T_0 \hfill \\ X(0) = x_0 \hfill \\ \end{gathered} \right.$$ \end{document}
whereAt is a multivaluedm-accretive operator on a Banach spaceE andF is a measurable multifunction defined on the set , lower semicontinuous inx and its values are not necessarily convex inE. This result generalizes some results in [1] and [9].

Manuscript Submission: HERE

  • Impact Factor (2019): 0.693
  • Scimago Journal Rank (2019): 0.412
  • SJR Hirsch-Index (2019): 20
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.664
  • Scimago Journal Rank (2018): 0.412
  • SJR Hirsch-Index (2018): 19
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0