Author:
A special case of a conjecture of Ryser states that if a 3-partite 3-uniform hypergraph has at mostv pairwise disjoint edges then there is a set of vertices of cardinality at most 2v meeting all edges of the hypergraph. The best known upper bound for the size of such a set is (8/3)v, given by Tuza [7]. In this note we improve this to (5/2)v.