Author: T. Kilgore 1
View More View Less
  • 1 Auburn University Department of Mathematics 36849-5307 Auburn Alabama USA 36849-5307 Auburn Alabama USA
Restricted access


Using the correspondence x↔ cos θ, where −1≤x ≤ 1 and 0 ≤ θ ≤ π, a function f(x) defined on [−1, 1] can be represented as a 2π-periodic function F(θ), and then the derivative f′(x) corresponds to

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{F^1 (\theta )}}{{ - \sin \theta }}$$ \end{document}
. From these observations, weighted-norm estimates for first and higher derivatives by x will be obtained, using a generalized Hardy inequality. The results in turn imply the generalized Hardy inequality upon which they depend and will hold true in any weighted norm for which the generalized Hardy is true.