Authors:
Wolfgang Kühnel
Search for other papers by Wolfgang Kühnel in
Current site
Google Scholar
PubMed
Close
and
Frank Lutz
Search for other papers by Frank Lutz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

A triangulation of a manifold (or pseudomanifold) is called a tight triangulation if any simplexwise linear embedding into any Euclidean space is tight. Tightness of an embedding means that the inclusion of any sublevel selected by a linear functional is injective in homology and, therefore, topologically essential. Tightness is a generalization of convexity, and the tightness of a triangulation is a fairly restrictive property. We give a review on all known examples of tight triangulations and formulate a (computer-aided) enumeration theorem for the case of at most 15 vertices and the presence of a vertex-transitive automorphism group. Altogether, six new examples of tight triangulations are presented, a vertex-transitive triangulation of the simply connected homogeneous 5-manifold SU(3)/SO(3) with vertex-transitive action, two non-symmetric 12-vertex triangulations of S3 × S2, and two non-symmetric triangulations of S3 × S3 on 13 vertices.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 6 2 0
Jan 2024 3 1 0
Feb 2024 4 0 0
Mar 2024 0 0 0
Apr 2024 1 0 0
May 2024 2 0 0
Jun 2024 0 0 0