Authors:
Károly Bezdek
Search for other papers by Károly Bezdek in
Current site
Google Scholar
PubMed
Close
and
Robert Connelly
Search for other papers by Robert Connelly in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Let 0 < c < s be fixed real numbers such that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${c \mathord{\left/ {\vphantom {c s}} \right. \kern-\nulldelimiterspace} s} \leqslant {{\left( {\sqrt 5 - 1} \right)} \mathord{\left/ {\vphantom {{\left( {\sqrt 5 - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}$$ \end{document}
, and let f : E2 → Ed for d ≥ 2 be a function such that for every p, qE2 if p − q = c, then f(p) − f(q) ≤ c, and if p − q = s, then f(p) − f(q) ≥ s. Then f is a congruence. This result depends on and expands a result of Rdo et. al. [9], where a similar result holds, but for
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${{\sqrt 3 } \mathord{\left/ {\vphantom {{\sqrt 3 } 3}} \right. \kern-\nulldelimiterspace} 3}$$ \end{document}
replacing
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${{\left( {\sqrt 5 - 1} \right)} \mathord{\left/ {\vphantom {{\left( {\sqrt 5 - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}$$ \end{document}
. We also present a further extensions where E2 is replaced by En for n > 2 and where the range of c/s is enlarged.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 1 0 0
May 2024 1 0 0
Jun 2024 6 0 1
Jul 2024 0 0 0
Aug 2024 4 0 0
Sep 2024 8 0 0
Oct 2024 1 0 0