View More View Less
  • 1 Vilnius University Department of Mathematics and Informatics Naugarduko 24 Vilnius 2600 Lithuania E-mail Naugarduko 24 Vilnius 2600 Lithuania E-mail
  • 2 Edinburgh, University, J.C.M.B School of Mathematics King's Buildings Mayfield Road, Edinburgh EH9 3JZ Scotland UK E-mail King's Buildings Mayfield Road, Edinburgh EH9 3JZ Scotland UK E-mail
Restricted access

Abstract  

Metric heights are modified height functions on the non-zero algebraic numbers Q which can be used to define a metric on certain cosets of

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline {\mathbb{Q}} ^*$$ \end{document}
. They have been defined with a view to eventually applying geometric methods to the study of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline {\mathbb{Q}} ^*$$ \end{document}
. In this paper we discuss the construction of metric heights in general. More specifically, we study in some detail the metric height obtained from the na"ve height of an algebraic number (the maximum modulus of the coefficients of its minimal polynomial). In particular, we compute this metric height for some classes of surds.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 2 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0