View More View Less
  • 1 23700 Linares Spain E-mail 23700 Linares Spain E-mail
  • | 2 23700 Linares Spain E-mail 23700 Linares Spain E-mail
  • | 3 28911 Leganés Spain E-mail 28911 Leganés Spain E-mail
Restricted access

Abstract  

In this contribution we analyze the generating functions for polynomials orthogonal with respect to a symmetric linear functional u, i.e., a linear application in the linear space of polynomials with complex coefficients such that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$u\left( {x^{2n + 1} } \right) = 0$$ \end{document}
. In some cases we can deduce explicitly the expression for the generating function
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\mathcal{P}}\left( {x,w} \right) = \sum\limits_{n = 0}^\infty {c_n P_n \left( x \right)w^n ,}$$ \end{document}
where {Pn}n is the sequence of orthogonal polynomials with respect to u.

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2021 0 0 0
Jan 2022 1 0 0
Feb 2022 0 0 0
Mar 2022 2 0 0
Apr 2022 2 0 0
May 2022 0 0 0
Jun 2022 0 0 0