Author: S. Saker 1
View More View Less
  • 1 Mansoura University Mathematics Department Faculty of Science Mansoura 35516 Egypt Mansoura 35516 Egypt
Restricted access

Abstract  

By means of Riccati transformation technique, we establish some new oscillation criteria for second-order nonlinear delay difference equation

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Delta (p_n (\Delta x_n )^\gamma ) + q_n f(x_{n - \sigma } ) = 0,\;\;\;\;n = 0,1,2,...,$$ \end{document}
when
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} = \infty }$$ \end{document}
. When
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} < \infty }$$ \end{document}
we present some sufficient conditions which guarantee that, every solution oscillates or converges to zero. When
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} = \infty }$$ \end{document}
holds, our results do not require the nonlinearity to be nondecreasing and are thus applicable to new classes of equations to which most previously known results are not.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0