Authors: and
View More View Less
• 1 Instituto de Matemáticas, Universidad Nacional Autónoma de México Ciudad Universitaria, México D.F. 04510, México Ciudad Universitaria, México D.F. 04510, México
• 2 Instituto de Matemáticas, Universidad Nacional Autónoma de México Ciudad Universitaria, México D.F. 04510, México Ciudad Universitaria, México D.F. 04510, México
Restricted access

## Summary

{\it Separoids\/} capture the combinatorial structure which arises from the separations by hyperplanes of a family of convex sets in some Euclidian space. Furthermore, as we prove in this note, every abstract separoid \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $S$ \end{document} can be represented by a family of convex sets in the \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(|S|-1)$ \end{document}-dimensional Euclidian space. The {\it geometric dimension\/} of the separoid is the minimum dimension where it can be represented and the upper bound given here is tight. Separoids have also the notions of {\it combinatorial dimension\/} and {\it general position\/} which are purely combinatorial in nature. In this note we also prove that: {\it a separoid in general position can be represented by a family of points if and only if its geometric and combinatorial dimensions coincide\/}.

Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0

Author: L. Fuchs

## A remark on the extended Hermite—Fejér type interpolation of higher order

Author: D. Berman

Author: A. Naoum